

MIAMI-DADE COUNTY PERFORMANCE TEST REPORT

Report No.: D2662.01-109-18

Rendered to:

CIW ENTERPRISES, INC. Mountain Top, Pennsylvania

PRODUCT TYPE: Roll-Up Garage Door **SERIES/MODEL**: Thermiser

This report contains in its entirety:

Cover Page:1pageReport Body:17pagesSketches:3pageTensile Test Chart:1pagePhotograph:1pageChamber Drawings:7pagesDrawings:16pages

Test Start Date:	10/25/2013
Test End Date:	11/07/2013
Report Date:	02/07/2014
Test Record Retention End Date:	11/07/2023
Miami-Dade County Notification No.:	ATI 13008

1.0 Client Identification:

1.1 Report Issued To:	CIW Enterprises, Inc. 24 Elmwood Avenue Crestwood Industrial Park Mountain Top, Pennsylvania 18707
1.2 Contact Person :	Trevor Errington
2.0 Laboratory Identification:	
2.1 Test Laboratory:	Architectural Testing, Inc.
	130 Derry Court
	York, Pennsylvania 17406-8405
2.2 Laboratory Phone Number:	717-764-7700

3.0 Project Summary:

3.1 Introduction: Architectural Testing, Inc. was contracted by CIW Enterprises, Inc. to conduct TAS 201, TAS 202, and TAS 203 testing on their Thermiser, Roll-Up Garage Door in accordance with Florida Building Code for High Velocity Hurricane Zone and Miami-Dade County requirements. The eight specimen(s) tested met the performance requirements set forth in the protocols. The results are summarized in Table 1.

Specimen #	Test Protocol	Design Pressure
1 and 2	TAS 202	+65.0 / -65.0 psf
3 through 8	TAS 201 / 203 (Large Missile)	+65.0 / -65.0 psf

Table 1: Summary of Test Results

- **3.2 Product Type**: Roll-Up Garage Door
- 3.3 Series/Model: Thermiser
- 3.4 Miami-Dade County Notification No.: ATI 13008
- 3.5 Test Dates: 10/25/2013 11/07/2013
- 3.6 Test Record Retention End Date: November 7, 2023
- **3.7 Test Location**: Architectural Testing, Inc. test facility in York, Pennsylvania.
- **3.8 Test Specimen Source**: The test specimen(s) were provided by the client. Representative samples of the test specimen(s) will be retained by Architectural Testing for a minimum of ten years from the test completion date.

3.0 Project Summary: (Continued)

3.9 Drawing Reference: The test specimen drawings have been reviewed by Architectural Testing and are representative of the test specimen(s) reported herein. Test specimen construction was verified by Architectural Testing per the drawings located in Appendix E. Any deviations are documented herein and on the drawings.

3.10 List of Official Observers:

<u>Name</u>

Company

Trevor Errington	CIW Enterprises, Inc.
Chris Rebarchak	CIW Enterprises, Inc.
Jeremy R. Bender	Architectural Testing, Inc.
Ken R. Stough	Architectural Testing, Inc.
Michael D. Stremmel, P.E.	Architectural Testing, Inc.
Aaron M. Shultz	Architectural Testing, Inc.

4.0 Test Protocol(s):

TAS 201-94, Impact Test Procedures

TAS 202-94, Criteria for Testing Impact & Non Impact Resistant Building Envelope Components Using Uniform Static Air Pressure

TAS 203-94, Criteria for Testing Products Subject to Cyclic Wind Pressure Loading

5.0 Test Specimen Description:

5.1 Product Sizes: Table 2 provides product sizes for the overall test specimen(s) and operable components.

Overall Area : 123.3 ft ²	Width (in.)	Height (in.)
Overall size	148	120

Table 2: Overall Specimen and Operable Component Sizes

5.0 Test Specimen Description: (Continued)

5.2 Test Chamber Description:

- **5.2.1 Test Chamber #1**: The steel chamber was constructed with a 3000 psi concrete jamb and a 1/4" thick steel jamb. Both jambs were welded and braced to the base steel test chamber and sealed with sealant to prevent extraneous leakage.
- **5.2.2 Test Chamber #2**: The steel chamber was constructed with a CMU jamb consisting of a double CMU unit and a 1/4" thick steel jamb. Only the CMU cell closest to the opening was filled with grout. Both jambs were welded and braced to the base steel test chamber and sealed with sealant to prevent extraneous leakage.
- **5.3 Garage Door Description**: The garage door utilized a 12' 5" wide distance between guides and a 10' 0" tall door opening height. Test Specimens #1, #3, #4, and #6 were installed using an interior mounting condition. Test Specimens #2, #5, #7, and #8 were installed using an exterior mounting condition.

The door curtain was constructed of nominal 1" thick, 3" high foam-filled interlocking steel slats. For Specimens #1, #3, #6 and #8, the slats were constructed of 0.0296" thick steel on the mounting side and 0.0220" thick steel on the opposite side with a polyurethane insulation core. Endlock/Wind-locks were located on each end of alternating slats and were secured with two 1/4" rivets per end. For Specimens #2, #4, #5 and #7, the slats were constructed of 0.0405" thick steel on the mounting side and 0.0220" thick steel on the opposite side with a polyurethane insulation core. Endlock/Wind-locks were located at each end of alternating slats and were secured with three 1/4" rivets per end. The doors were secured to the jambs of the chamber with either a Box Guide track, (Reference Drawing #GA0576) or a Zee Guide track, (Reference Drawing #GA0575). All guides utilized a 4" by 3-1/2" by 1/4" wall mounting angle. The wall mounting angle was secured to the guide track with 1/2"-13 x 1-1/2" long bolts and nuts, spaced 18" on center.

The hood was constructed of 0.022" thick steel and was tested to qualify interior and exterior configurations. The doors were tested for air pressure resistance per TAS 202 in the closed position with the slide locks disengaged.

5.4 Installation Methods:

5.4.1 Steel Jamb Installation (Weld): The Box Guide track was secured to the steel jamb of the chamber with 1/4" fillet welds in the mounting slots. The welds were spaced 18" on center.

5.0 Test Specimen Description: (Continued)

5.4 Installation Methods: (Continued)

- **5.4.2 Steel Jamb Installation (Bolt)**: The Box Guide track was secured to the steel jamb of the chamber with 1/2"-13 Hex bolts with washers tapped into the steel jamb. The bolts were spaced 18" on center.
- **5.4.3 Concrete Jamb Installation (Anchor A)**: The Zee Guide track was secured to the concrete jamb with 1/2" x 4-1/2" Hilti Kwik Bolt 3 anchors. The anchors were spaced 16" on center.
- **5.4.4 Concrete Jamb Installation (Anchor B)**: The Zee Guide track was secured to the concrete jamb with 1/2" x 5-1/2" Simpson Wedge-All anchors. The anchors were spaced 16" on center.
- **5.4.5 Double CMU Jamb Installation (Anchor A)**: The Zee Guide track was secured to the concrete jamb with 1/2" x 4-1/2" Hilti Kwik Bolt 3 anchors. The anchors were spaced 8" on center.
- **5.4.6 Double CMU Jamb Installation (Anchor B)**: The Zee Guide track was secured to the concrete jamb with 1/2" x 5-1/2" Simpson Wedge-All anchors. The anchors were spaced 8" on center.
- **5.5 Test Specimen Construction Summary**: Table 3 provides of summary of the installation details utilized for each test specimen.

Specimen	Mounting	Left Jamb		Rigł	nt Jamb
specimen	Orientation	Material	Anchor Type	Material	Anchor Type
#1	Interior	Concrete	Anchor A	1/4" Steel	Weld
#2	Exterior	Concrete	Anchor B	1/4" Steel	Bolt
#3	Exterior	Concrete	Anchor B	1/4" Steel	Bolt
#4	Interior	Concrete	Anchor A	1/4" Steel	Weld
#5	Exterior	Concrete	Anchor B	1/4" Steel	Bolt
#6	Interior	Double CMU	Anchor A	1/4" Steel	Weld
#7	Exterior	Double CMU	Anchor B	1/4" Steel	Bolt
#8	Exterior	Concrete	Anchor A	1/4" Steel	Bolt

 Table 3: Overall Specimen and Installation Details

6.0 Test Results: The temperature during TAS 202 testing was 75°F. Results are tabulated as follows:

6.1 Protocol TAS 202-94, Static Air Pressure

Table 4 provides the results for positive and negative uniform static load test.

Load	Indicator Location	Deflection (in.)	Permanent Set (in.)	Percent R	
(psf)	LUCATION	Measured	Measured	Measured	Allowed
+48.87	4	0.01	0.44	050/	050(
50% of Test	1	9.01	0.41	95%	95%
Pressure					
+65.16					
Design	1	12.56	1.17	91%	N/A
Pressure					
+97.74					
Test	1	10.64	1.16	89%	80%
Pressure					
-48.87					
50% of Test	1	7.89	0.34	96%	95%
Pressure					
-65.16					
Design	1	10.53	0.97	91%	N/A
Pressure					
-97.74					
Test	1	11.56	1.34	88%	80%
Pressure					

 Table 4: Test Specimen #1 TAS 202, Preload and Design Load Test Results

Table 5 provides the results for the forced entry resistance test.

			_	_
Table 5. Test	Snecimen #1	τδς 202	Forced Entr	y Test Results
Table J. Test	$Specimen \pi \mathbf{I}$. 1115 202,	I UICCU LIIU	y rest nesults

Title of Test	Results	Allowed
Forced Entry Resistance	Daga	No Entru
in accordance with 300 lb upward pull	Pass	No Entry

Note: See Architectural Testing Sketch #1 for indicator locations. Deflection/permanent set reported is the overall deflection between three points (longest unsupported span) which accounts for support movement.

6.1 Protocol TAS 202-94, Static Air Pressure (Continued)

Table 6 provides the results for positive and negative uniform static load test.

Load	Indicator Deflection Permanent Percent Red				
(psf)	Location	(in.) Measured	Set (in.) Measured	Measured	Allowed
+48.87 50% of Test	1	5.92	0.30	95%	95%
Pressure +65.16 Design Pressure	1	8.18	0.59	93%	N/A
+97.74 Test Pressure	1	11.58	1.54	87%	80%
-48.87 50% of Test Pressure	1	5.79	0.28	96%	95%
-65.16 Design Pressure	1	7.81	0.50	94%	N/A
-97.74 Test Pressure	1	9.08	0.76	92%	80%

Table 6: Test Specimen #2 TAS 202, Preload and Design Load Test Results

Table 7 provides the results for the forced entry resistance test.

Table 7: Test Specimen #2 TAS 202, Forced Entry Test Results

Title of Test	Results	Allowed
Forced Entry Resistance	Pass	No Entry
in accordance with 300 lb upward pull	1 855	NO EIIU y

Note: See Architectural Testing Sketch #1 for indicator locations. Deflection/permanent set reported is the overall deflection between three points (longest unsupported span) which accounts for support movement.

Observations: The door was fully operable upon completion of testing and showed no signs of anchorage failure.

Conclusion: Architectural Testing observed no signs of failure in any area of the test specimen during the TAS 202 testing; as such, the test specimen satisfies the requirements of TAS 202.

www.archtest.com

6.0 Test Results: The temperature during TAS 201 testing was 75°F. Results are tabulated as follows:

6.2 Protocol TAS 201-94, *Large Impact Procedures*

Tables 8 through 13 provide the results for the large missile impact test.

Impact #	Missile Weight (lbs.)	Missile Length (in.)	Missile Velocity (ft./sec.)
1	9.2	93-7/8	49.0
2	9.2	93-7/8	48.9

 Table 8: Test Specimen #3 TAS 201, Large Missile Impact Test Results

Table 9: Test Specimen #4 TAS 201, Large Missile Impact Test Results

Impact #	Missile Weight (lbs.)	Missile Length (in.)	Missile Velocity (ft./sec.)
1	9.2	93-7/8	79.8
2	9.2	93-7/8	79.5

Table 10: Test Specimen #5 TAS 201	, Large Missile Impact Test Results
------------------------------------	-------------------------------------

Impact #	Missile Weight (lbs.)	Missile Length (in.)	Missile Velocity (ft./sec.)
1	9.2	93-7/8	80.0
2	9.2	93-7/8	79.8
3	9.2	93-7/8	79.5

Note: See Architectural Testing Sketch #2 for impact locations.

6.2 Protocol TAS 201-94, Large Impact Procedures (Continued)

Table 11: Test Specimen #6 TAS 201, Large Missile Impact Test Results

Impact #	Missile Weight (lbs.)	Missile Length (in.)	Missile Velocity (ft./sec.)
1	9.2	93-7/8	48.8
2	9.2	93-7/8	49.0

<u>1 est specimen #7 1A5 201, Laige missie impact 1</u>				
Impact #	Missile Weight (lbs.)	Missile Length (in.)	Missile Velocity (ft./sec.)	
1	9.17	99-3/8	80.0	
2	9.17	99-3/8	80.3	
3	9.17	99-3/8	79.4	

Table 12: Test Specimen #7 TAS 201, Large Missile Impact Test Results

Table 13: 7	Test Specim	en #8 TAS 201	, Large Missile	Impact Test Results

	Impact #	Missile Weight (lbs.)	Missile Length (in.)	Missile Velocity (ft./sec.)
Ī	1	9.2	93-7/8	49.6
	2	9.2	93-7/8	49.6
	3	9.2	93-7/8	49.9

Note: See Architectural Testing Sketch #3 for impact locations.

Conclusion: The large missiles impacted each intended target and Architectural Testing carefully inspected each impact location. Architectural Testing observed no signs of penetration, rupture, or opening after the large missile impact test; as such, each test specimen satisfies the large missile requirements of TAS 201.

6.0 Test Results: The temperature during TAS 203 testing was 75°F. Results are tabulated as follows:

6.3 Protocol TAS 203-94, Cyclic Wind Pressure Loading

Tables 14 through 31 provide the results for the positive and negative cyclic load test.

Table 14: Test Specimen #3 TAS 203, Cyclic Test Spectrum and Average Cycle Time

Design	Design +65.0 / -65.0 psf		Stage		
Pressure	+05.0 / -05.0 psi	1	2	3	
Pressure Range (psf)		0.0 – 32.5	0.0 – 39.0	0.0 - 84.5	
Average Cycle Time (sec.)		3.00	2.90		
Number of Cycles		600	70	1	
		4	5	6	
Pressure Range (psf)		0.0 – 32.5	0.0 – 39.0	0.0 - 84.5	
Average Cycle Time (sec.)		3.00	3.00		
Numb	Number of Cycles		70	1	

Table 15: Test Specimen #3 TAS 203, Positive Cyclic Load Test Results

	Maximum Deflection	Permanent Set (in.)
1	12.98	1.58

Table 16: Test Specimen #3 TAS 203, Negative Cyclic Load test results

	Maximum Deflection	Permanent Set (in.)
1	10.61	1.24

Note: See Architectural Testing Sketch #1 for indicator locations. Deflection/permanent set reported is the overall deflection between three points (longest unsupported span) which accounts for support movement.

6.3 Protocol TAS 203-94, Cyclic Wind Pressure Loading: (Continued)

Design	$(\mathbf{\Gamma} 0 / (\mathbf{\Gamma} 0) \mathbf{n} \mathbf{a} \mathbf{f} $	Stage		
Pressure	+65.0 / -65.0 psf	1	2	3
Pressu	re Range (psf)	0.0 - 32.5	0.0 - 39.0	0.0 - 84.5
Average Cycle Time (sec.)		3.00	3.00	
Number of Cycles		600	70	1
		4	5	6
Pressure Range (psf)		0.0 – 32.5	0.0 - 39.0	0.0 - 84.5
Average Cycle Time (sec.)		3.00	3.00	
Numł	per of Cycles	600	70	1

Table 17: Test Specimen #4 TAS 203, Cyclic Test Spectrum and Average Cycle Time

Table 18: Test Specimen #4 TAS 203, Positive Cyclic Load Test Results

Indicator	Maximum	Permanent Set
Location	Deflection	(in.)
1	10.28	1.19

Table 19: Test Specimen #4 TAS 203, Negative Cyclic Load Test Results

Indicator	Maximum	Permanent Set
Location	Deflection	(in.)
1	11.83	1.31

Note: See Architectural Testing Sketch #1 for indicator locations. Deflection/permanent set reported is the overall deflection between three points (longest unsupported span) which accounts for support movement.

6.3 Protocol TAS 203-94, Cyclic Wind Pressure Loading: (Continued)

Tab	ole 20: Test S	pecimen #5	TAS 203,	Cyclic Test S	pectrum a	nd Average	Cycle Time

Design	$(\Gamma 0 / (\Gamma 0 mat)$		Stage	
Pressure	+65.0 / -65.0 psf	1	2	3
Pressu	re Range (psf)	0.0 - 32.5	0.0 - 39.0	0.0 - 84.5
Average (Cycle Time (sec.)	3.00	3.00	
Numb	Number of Cycles		70	1
		4	5	6
Pressure Range (psf)		0.0 – 32.5	0.0 - 39.0	0.0 - 84.5
Average Cycle Time (sec.)		3.00	3.00	
Numł	per of Cycles	600	70	1

Table 21: Test Specimen #5 TAS 203, Positive Cyclic Load Test Results

Indicator	Maximum	Permanent Set
Location	Deflection	(in.)
1	11.60	1.51

Table 22: Test Specimen #5 TAS 203, Negative Cyclic Load Test Results

	Maximum Deflection	Permanent Set (in.)
1	10.98	1.38

Note: See Architectural Testing Sketch #1 for indicator locations. Deflection/permanent set reported is the overall deflection between three points (longest unsupported span) which accounts for support movement.

6.3 Protocol TAS 203-94, Cyclic Wind Pressure Loading: (Continued)

Design			Stage	
Pressure	+65.0 / -65.0 psf	1	2	3
Pressu	re Range (psf)	0.0 - 32.5	0.0 - 39.0	0.0 - 84.5
Average Cycle Time (sec.)		4.80	4.60	
Number of Cycles		600	70	1
		4	5	6
Pressure Range (psf)		0.0 – 32.5	0.0 - 39.0	0.0 - 84.5
Average Cycle Time (sec.)		4.80	5.00	
Numb	per of Cycles	600	70	1

Table 23: Test Specimen #6 TAS 203, Cyclic Test Spectrum and Average Cycle Time

Table 24: Test Specimen #6 TAS 203, Positive Cyclic Load Test Results

	Maximum Deflection	Permanent Set (in.)
1	9.28	0.33

Table 25: Test Specimen #6 TAS 203, Negative Cyclic Load Test Results

Indicator	Maximum	Permanent Set
Location	Deflection	(in.)
1	11.74	1.06

Note: See Architectural Testing Sketch #1 for indicator locations. Deflection/permanent set reported is the overall deflection between three points (longest unsupported span) which accounts for support movement.

6.3 Protocol TAS 203-94, Cyclic Wind Pressure Loading: (Continued)

Table	26: 1	Test Sj	pecimen	#7 TAS 2	203, C	Lyclic 🕻	Fest Sp	ectrum	and <i>I</i>	Average	Cycle T	ſime

Design	$(\mathbf{\Gamma} 0 / (\mathbf{\Gamma} 0) \mathbf{n} \mathbf{a} \mathbf{f} $		Stage	
Pressure	+65.0 / -65.0 psf	1	2	3
Pressu	re Range (psf)	0.0 - 32.5	0.0 - 39.0	0.0 - 84.5
Average (Cycle Time (sec.)	3.60	4.40	
Numb	Number of Cycles		70	1
		4	5	6
Pressure Range (psf)		0.0 – 32.5	0.0 - 39.0	0.0 - 84.5
Average Cycle Time (sec.)		4.80	5.00	
Numł	per of Cycles	600	70	1

Table 27: Test Specimen #7 TAS 203, Positive Cyclic Load Test Results

Indicator	Maximum	Permanent Set
Location	Deflection	(in.)
1	11.34	0.24

Table 28: Test Specimen #7 TAS 203, Negative Cyclic Load Test Results

Indicator	Maximum	Permanent Set
Location	Deflection	(in.)
1	9.50	0.62

Note: See Architectural Testing Sketch #1 for indicator locations. Deflection/permanent set reported is the overall deflection between three points (longest unsupported span) which accounts for support movement.

6.3 Protocol TAS 203-94, Cyclic Wind Pressure Loading: (Continued)

		<i>, cjene reses</i>		verage ayere i
Design	$(\Gamma 0 / (\Gamma 0 mat)$		Stage	
Pressure	+65.0 / -65.0 psf	1	2	3
Pressure Range (psf)		0.0 - 32.5	0.0 – 39.0	0.0 - 84.5
Average (Average Cycle Time (sec.)		3.00	
Numb	Number of Cycles		70	1
			5	6
Pressu	Pressure Range (psf)		0.0 – 39.0	0.0 - 84.5
Average Cycle Time (sec.)		3.00	3.00	
Numb	per of Cycles	600	70	1

Table 29: Test Specimen #8 TAS 203, Cyclic Test Spectrum and Average Cycle Time

Table 30: Test Specimen #8 TAS 203, Positive Cyclic Load Test Results

Indicator	Maximum	Permanent Set
Location	Deflection	(in.)
1	13.34	1.84

Table 31: Test Specimen #8 TAS 203, Negative Cyclic Load Test Results

Indicator	Maximum	Permanent Set
Location	Deflection	(in.)
1	10.20	0.78

Note: See Architectural Testing Sketch #1 for indicator locations. Deflection/permanent set reported is the overall deflection between three points (longest unsupported span) which accounts for support movement.

Observations: The door was fully operable upon completion of testing and showed no signs of anchorage failure.

Conclusion: Architectural Testing observed no signs of failure in any area of the test specimens during the cyclic load test; as such, the test specimens satisfy the cyclic load requirements of TAS 203.

6.4 ASTM E 8, Tensile Test Results

Test Method: The test specimens were evaluated in accordance with ASTM E 8-08, *Standard Test Methods for Tensile Testing of Metallic Materials*. The test specimens were machined and sized in compliance with section 6.0 of the standard. The specimens were tested using a Satec 50UD Universal Machine with a cross head speed of 0.2 in/min

Test Results: The test results for the tensile testing of the garage door slats are provided in Appendix B and summarized in Table 32 below.

Specimen	Yield Strength (psi)	Tensile Load (lbf)	Tensile Strength (psi)	Elongation (%)	Area Reduction (%)
1	45,230	1164	57,478	31.6	27.0
2	44,789	1158	56,722	30.8	25.0
3	44,986	1161	56,918	33.2	27.0
4	44,818	1158	56,787	30.0	24.0
5	45,117	1160	57,000	28.9	25.0
6	45,077	1159	57,103	30.7	29.0
Average	45,003	1,160	57,001	30.9	26.2

Table 32: A	STM E 8	Гensile Te	st Results
10.010 0 =			

The average Modulus of Elasticity for the tested specimens was 28.99×10^6 psi.

7.0 Test Equipment:

Cannon: Constructed from steel piping utilizing compressed air to propel the missile

Missile: 2x4 Southern Pine

Timing Device: Electronic beam type

Cycling Mechanism: Computer controlled centrifugal blower with electronic pressure measuring device

Deflection Measuring Device: Linear transducers

8.0 Laboratory Compliance Statements: The following are provided as required by the protocols for the testing reported herein.

Upon completion of testing, specimens tested for TAS 201-94 met the requirements of Section 1626 of the Florida Building Code, Building.

Upon completion of testing, specimens tested for TAS 202-94 met the requirements of Section 1620 of the Florida Building Code, Building.

Upon completion of testing, specimens tested for TAS 203-94 met the requirements of Section 1625 of the Florida Building Code, Building.

Tape and film were used to seal against air leakage during structural testing. In our opinion, the tape and film did not influence the results of the test.

Architectural Testing will service this report for the entire test record retention period. Test records that are retained such as detailed drawings, datasheets, representative samples of test specimens, or other pertinent project documentation will be retained by Architectural Testing, Inc. for the entire test record retention period.

This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimen(s) tested. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, Inc.

Aaron M. Shultz Technician Michael D. Stremmel, P.E. Senior Project Engineer

AMS:dem/cmd

Attachments (pages): This report is complete only when all attachments listed are included. Appendix A: Sketches (3) Appendix B: Tensile Test Chart (1) Appendix C: Photograph (1) Appendix D: Chamber Drawings (7) Appendix E: Drawings (16)

This report produced from controlled document template ATI 00651, issued 01/18/13.

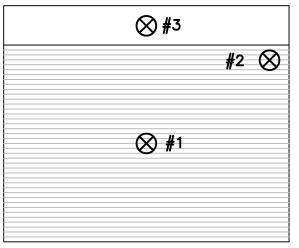
www.archtest.com

Appendix A

Sketches

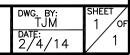
	REV DATE	DESCRIPTION	BY
	∞ #1		
			NG. BY: SHEET
PROJECT NO. D2662.01 PROJECT NAME: Series Thermiser Rolling Door		n #1 — Indicator Locations	TJM ∎1 ∕of
109-18 CLIENT: CIW Enterprises, Inc.	Architectural Testing		ATE: /4/14 1

	REV	DATE	DESCRIPTION	BY
				I
]			
⊗ #1			⊗ #1	
			¥ "	
		\bigotimes "		
⊗#2		⊗#2		
Test Specimen #3 – Interior Mount		Test Sp	pecimen #4 — Interior Mount	
	○ #7			
	⊗ #3			
		#2 🛇		
	⊗ # 1			
	0 "			
Test Specime	n #5 – Exte	rior Mou	nt	
PROJECT NAME: Series Thermiser Rolling Door		DRAWING	Sketch #2 — Impact Locations	SHEET
CLIENT: CIW Enterprises, Inc.	Architectural Tes		Sketch #2 — Impact Locations DATE: 2/4/1	4 / 1


project no. D2662.01 109–18 CLIENT: CIW Enterprises, Inc.

	REV DATE	DESCRIPTION	
		⊗ #3	
	⊗#2		
⊗ #1		⊗ #1	
⊗#2			

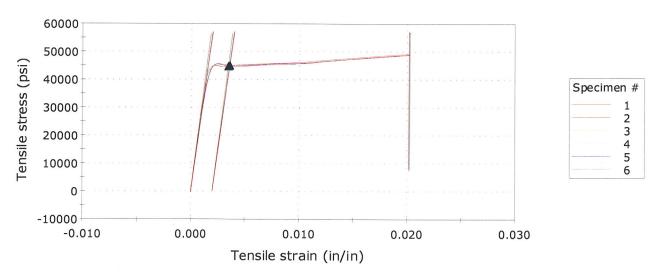
Test Specimen #6 - Interior Mount


Test Specimen #7 - Exterior Mount

Test Specimen #8 – Exterior Mount

DRAWING

Appendix B


Tensile Test Chart

Architectural Testing

ASTM E8 - 08, Tensile Strength of Metallic Materials Last Updated by: Gary Hartman 06/21/2010 Uses Instron Wedge Grips with appropriate wedges for materials being evaluated.

ATI Job # Client Name Test Speed Load Cell Capacity / ICN Load Cell Calibration Due Date Test Frame / ICN Frame Calibration Due Date Lab Conditions C6863.01-109-18/0405" Samples CIW Enterprises, Inc. 0.20000 in/min 50 Kn/005740 09/04/14 Instron 3369 09/04/14 68°F / 52% R.H.

Specimens 1 to 6

Measured Values

	Specimen ID	Original Thickness (in)	Final thickness (in)	Original Width (in)	Final width (in)	Original Length (in)	Final length (in)
1	#1A-1) .0405"	0.0405	0.0355	0.5000	0.4180	2,0000	2.6330
2	#1A-2) .0405"	0.0409	0.0354	0.4990	0.4340	2.0000	2.6150
3	#1A-3) .0405"	0.0408	0.0347	0.5000	0.4310	2,0000	2,6650
4	#1B-1) .0405"	0.0408	0.0355	0.5000	0.4370	2.0000	2,6000
5	#1B-2) .0405"	0.0407	0.0363	0.5000	0.4220	2.0000	2.5780
6	#1B-3) .0405"	0.0406	0.0359	0.5000	0.4020	2.0000	2.6140
Mean		0.0407	0.0356	0.4998	0.4240	2.0000	2.6175
Standard Deviation		0.00	0.00	0.00	0.01	0.00	0.03

Calculated Values

	Maximum Load (lbf)	Yield Strength (psi)	Tensile Strength (psi)	Modulus of Elasticity (psi)	Reduction of Area (%)	% Elongation	Start Date	End Date
1	1164	45230	57478	28166007	27	31.6	11/7/2013 7:43 AM	11/7/2013 7:47 AM
2	1158	44789	56722	30503383	25	30.8	11/7/2013 7:49 AM	11/7/2013 7:52 AM
3	1161	44986	56918	29141270	27	33.2	11/7/2013 7:54 AM	11/7/2013 7:57 AM
4	1158	44818	56787	29927532	24	30.0	11/7/2013 7:59 AM	11/7/2013 8:02 AM
5	1160	45117	57000	28528418	25	28.9	11/7/2013 8:04 AM	11/7/2013 8:07 AM
6	1159	45077	57103	27660862	29	30.7	11/7/2013 8:09 AM	11/7/2013 8:12 AM
Mean	1160	45003	57002	28987912	26	30.9		
Standard	2.25	173.28	271.64	1081737.53	1.84	1.48		

Appendix C Photograph

Photo No. 1 12' 4" x 10' Roll-Up Garage Door

Appendix D

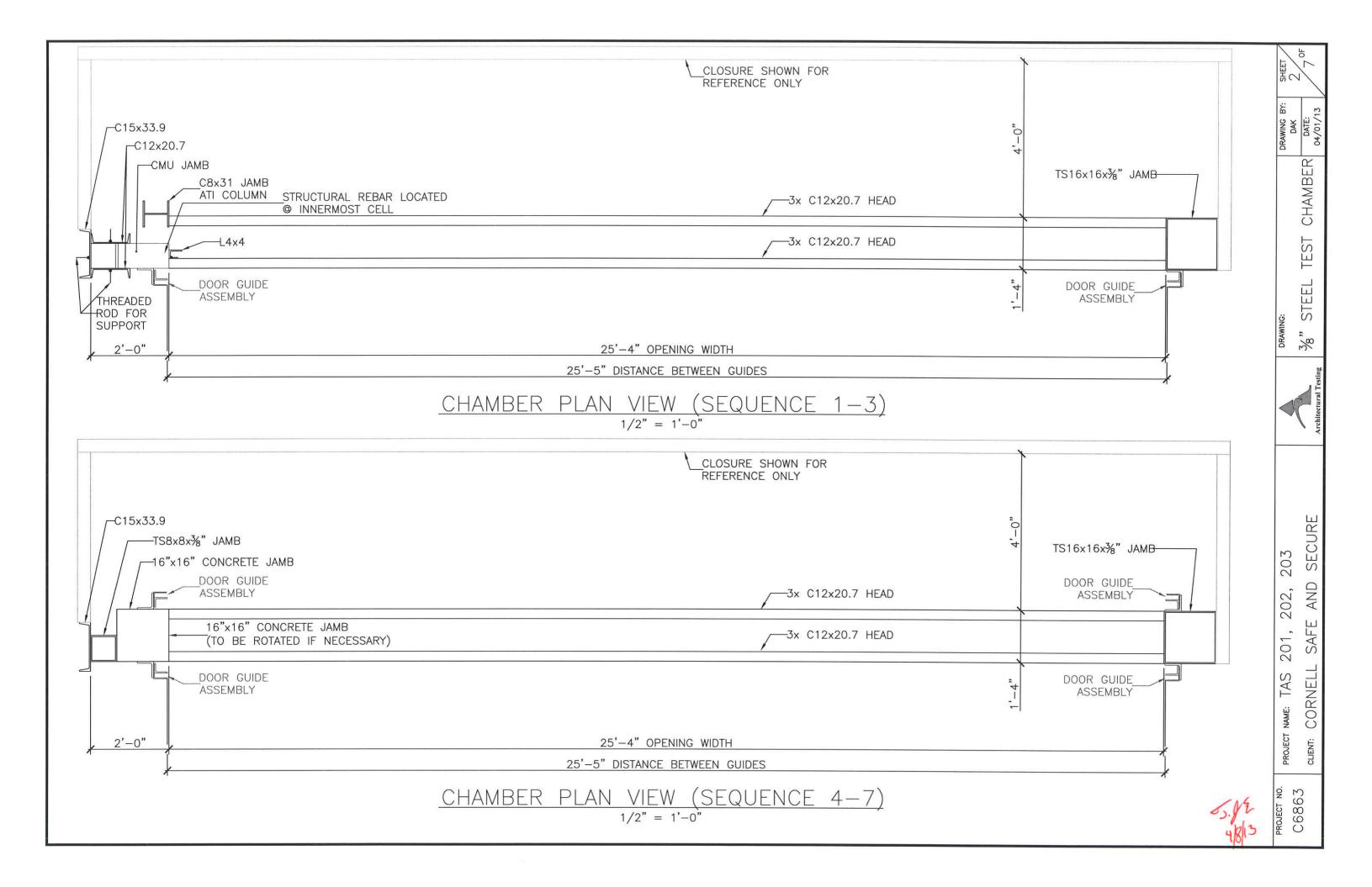
Chamber Drawings

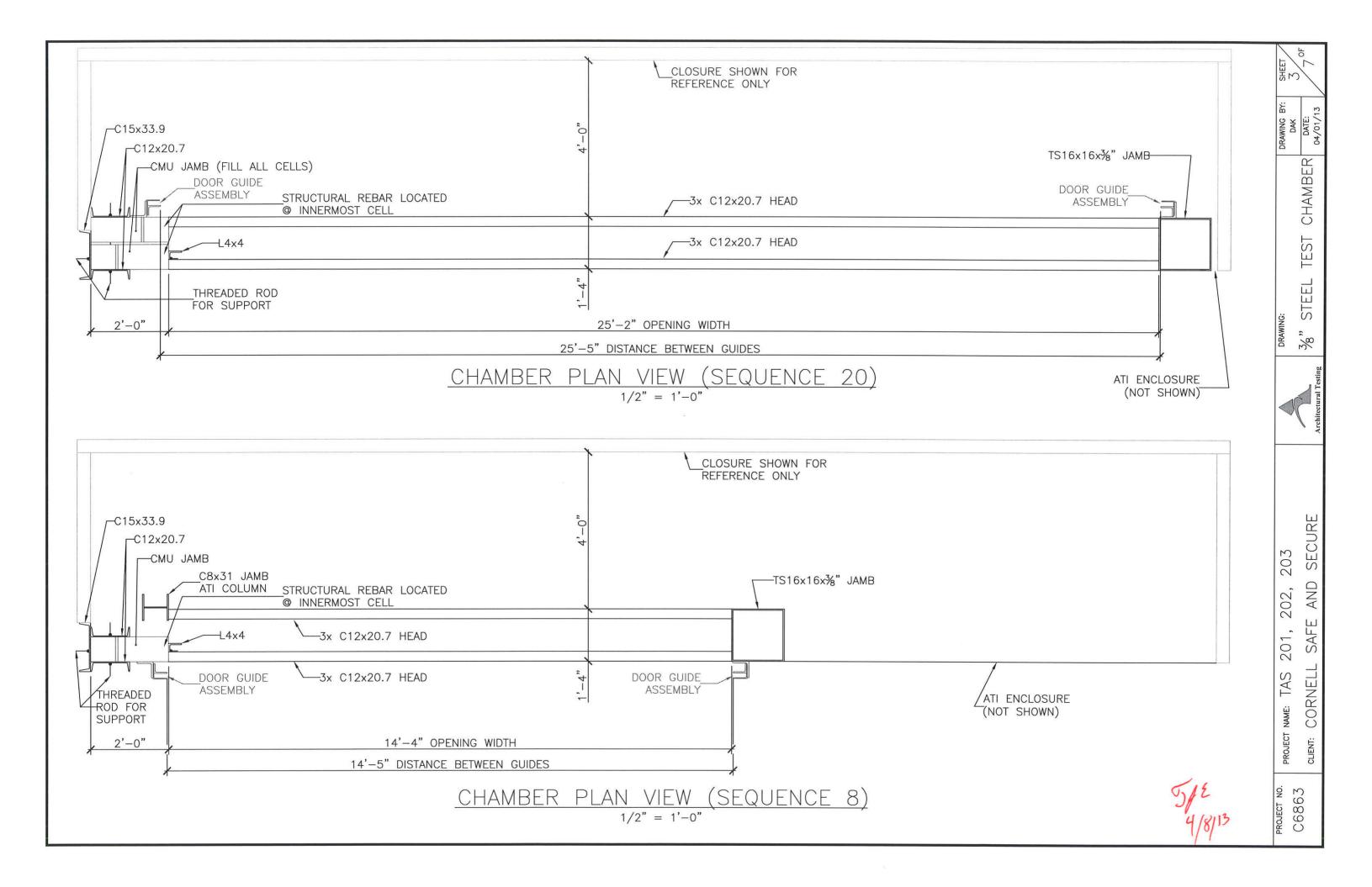
CORNELL SAFE AND SECURE TAS 201, 202, 203

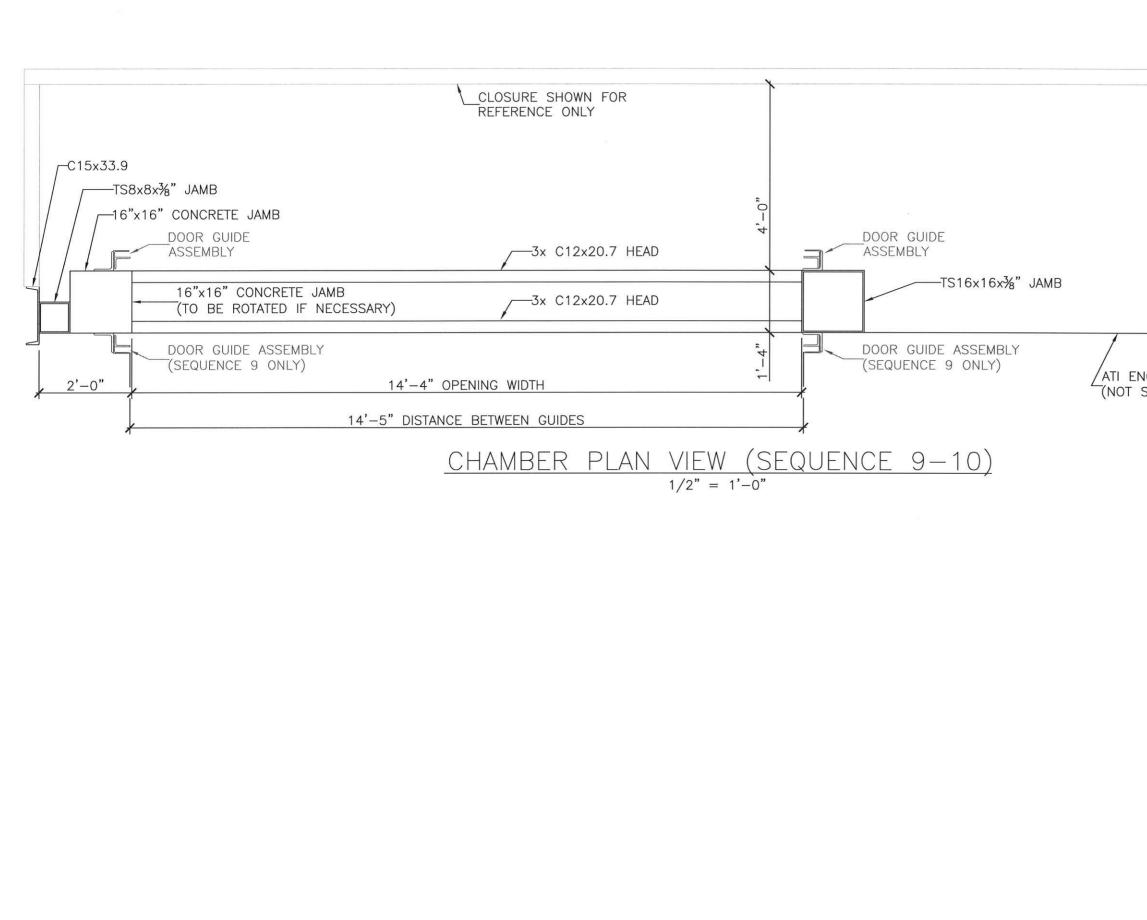
3	/8"	STEEL	CHAMBER	(SEQUENCES	1-10	38	20)
			3/16	" [`] = 1'-0"			,

DWG. NO.	DESCRIPTION
1 of 7	TITLE SHEET
2 of 7	CHAMBER PLAN VIEWS (SEQUENCES 1-7)
3 of 7	CHAMBER PLAN VIEWS (SEQUENCES 20 & 8)
4 of 7	CHAMBER PLAN VIEWS (SEQUENCES 9-10)
7 of 7	TYPICAL SECTION

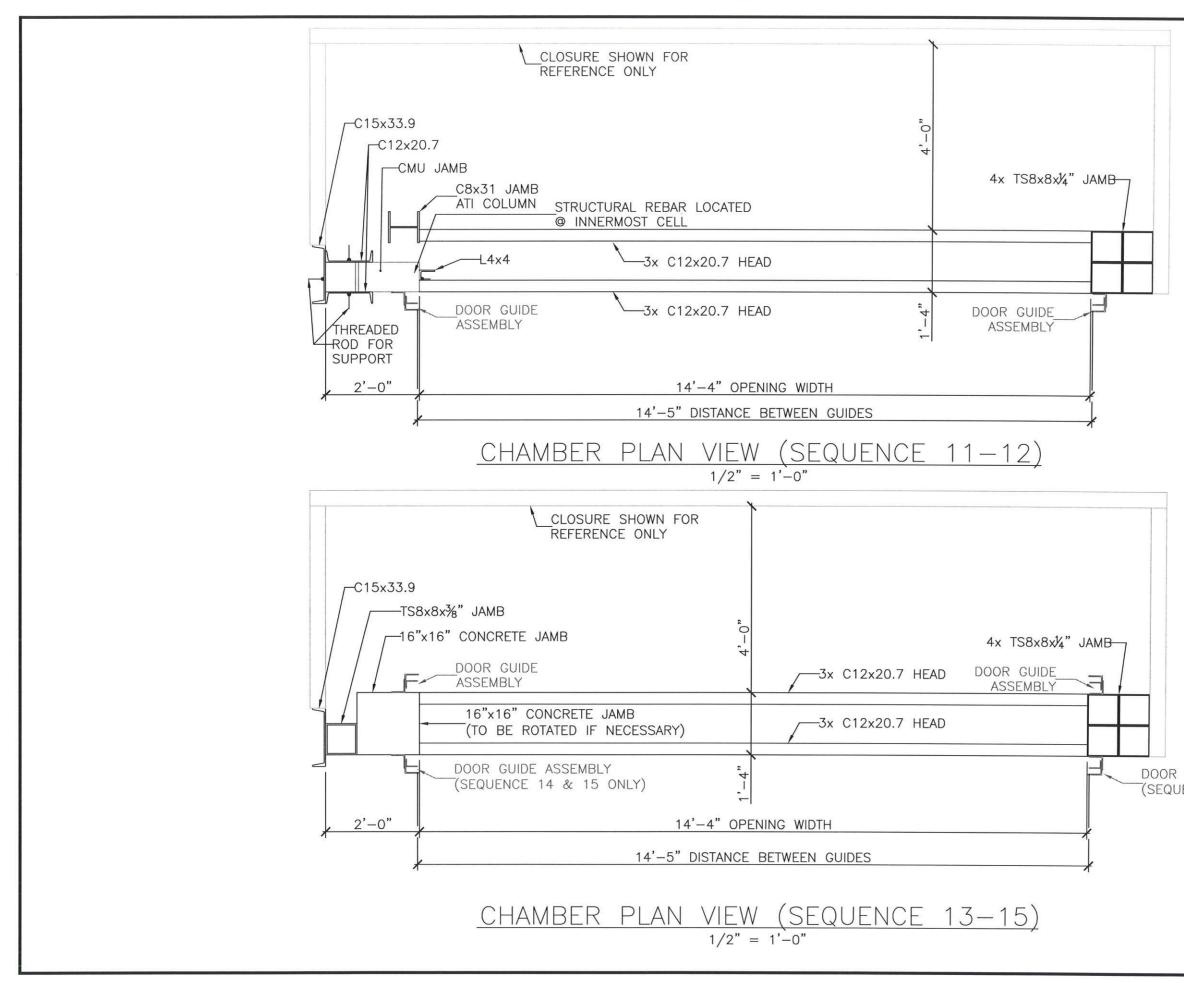
NOTES:

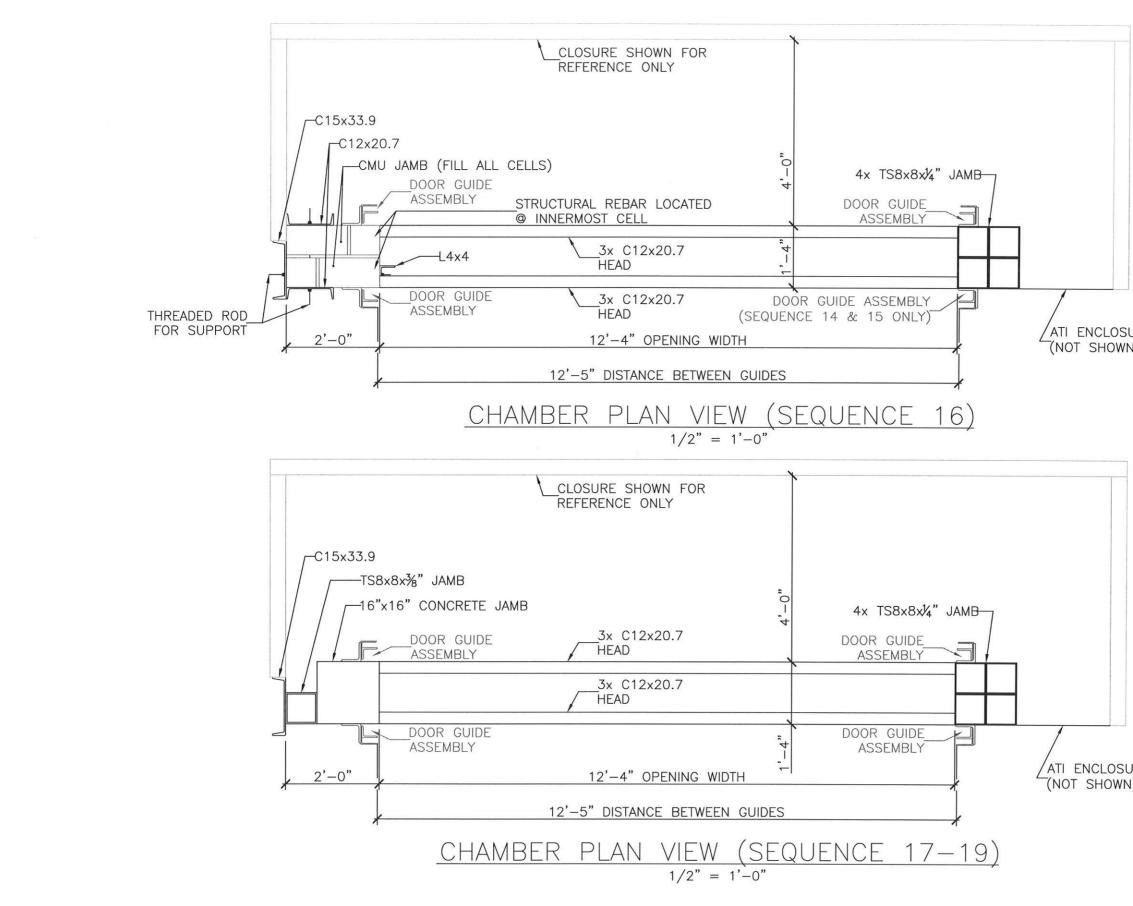

- 1. ALL MOCKUP PERIMETER SEALS BY OTHERS
- 2. ALL DIMENSIONS CRITICAL TO MOCKUP INSTALLATION MUST BE APPROVED
- 3. TEST CHAMBER ENCLOSURE DETAILS NOT SHOWN
- 4. TEST CHAMBER STEEL CONNECTION DETAILS NOT SHOWN

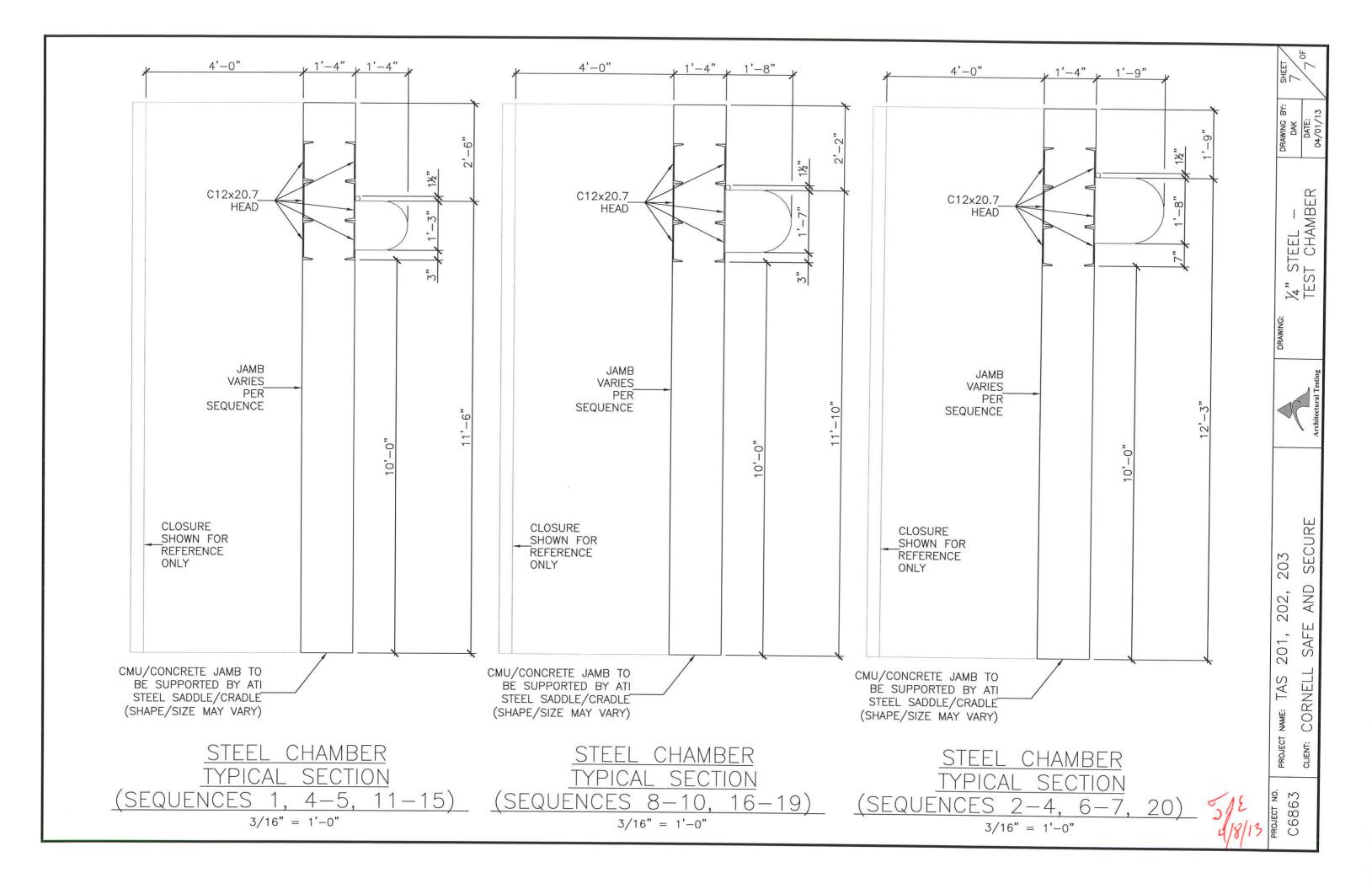



DWG. NO.	DE
1 of 7	TIT
5 of 7	CHAMBER PLAN VI
6 of 7	CHAMBER PLAN VIE
7 of 7	TYPI

NOTES:

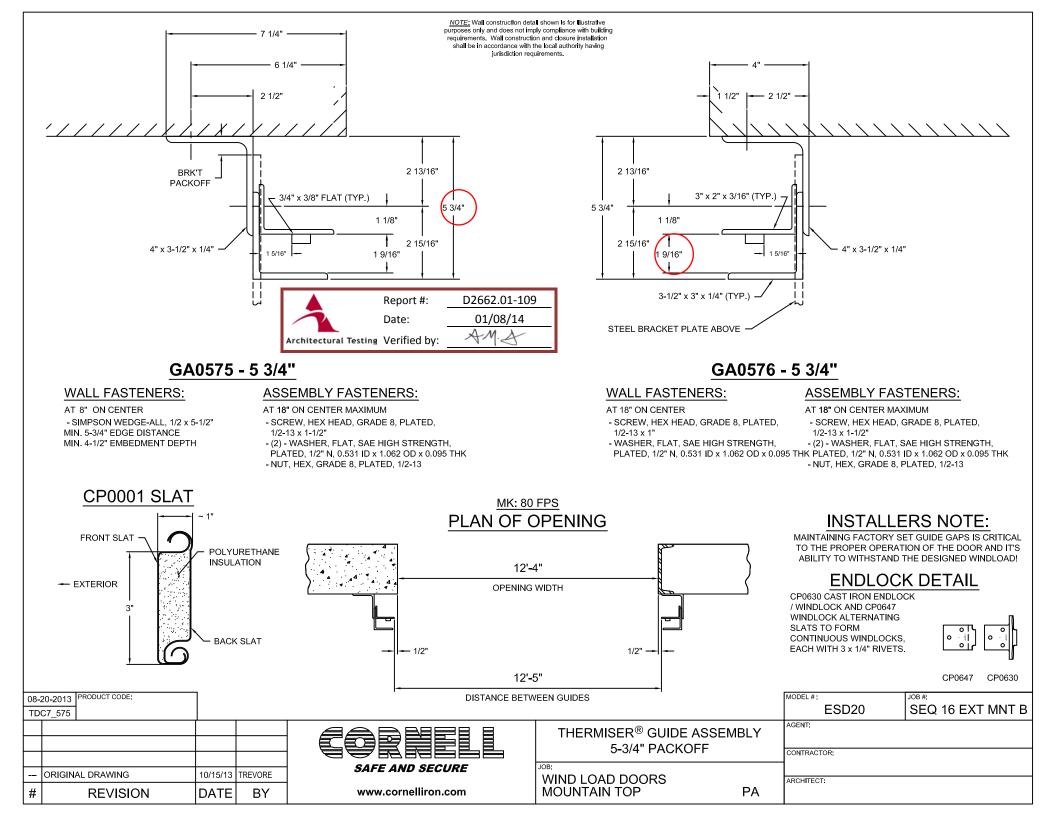

- 1. ALL MOCKUP PERIMETER SEALS BY OTHERS
- 3. TEST CHAMBER ENCLOSURE DETAILS NOT SHOWN
- 4. TEST CHAMBER STEEL CONNECTION DETAILS NOT SHOWN

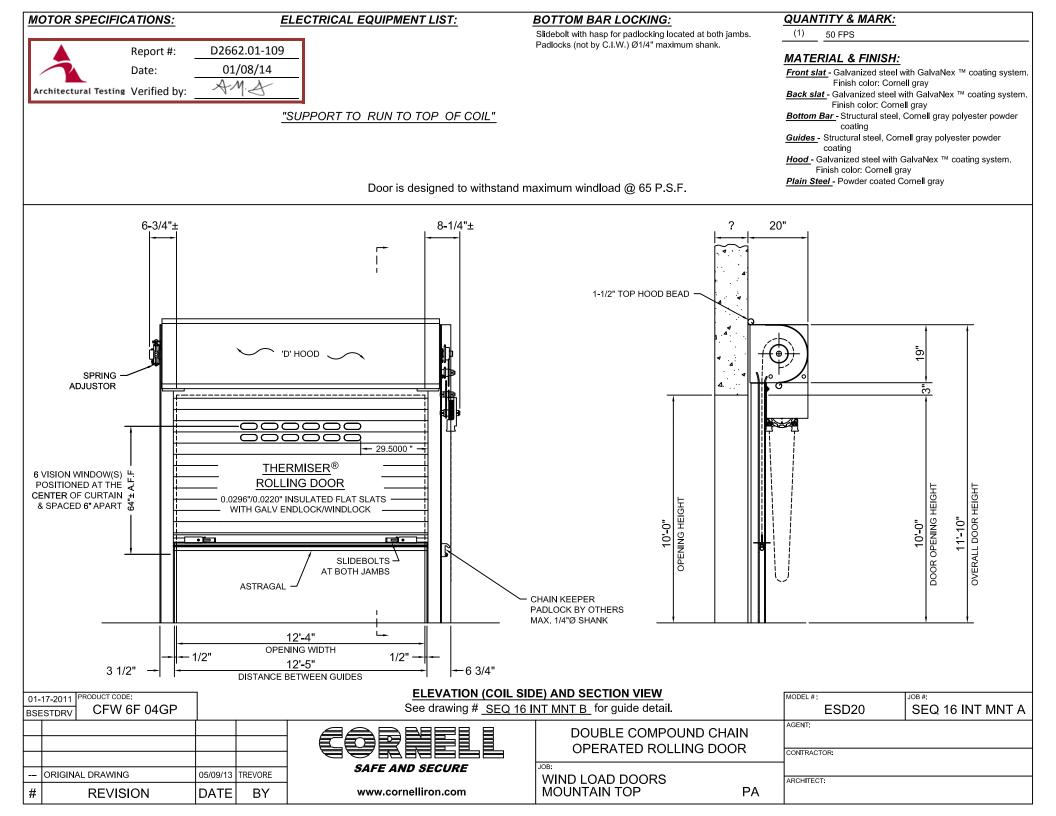


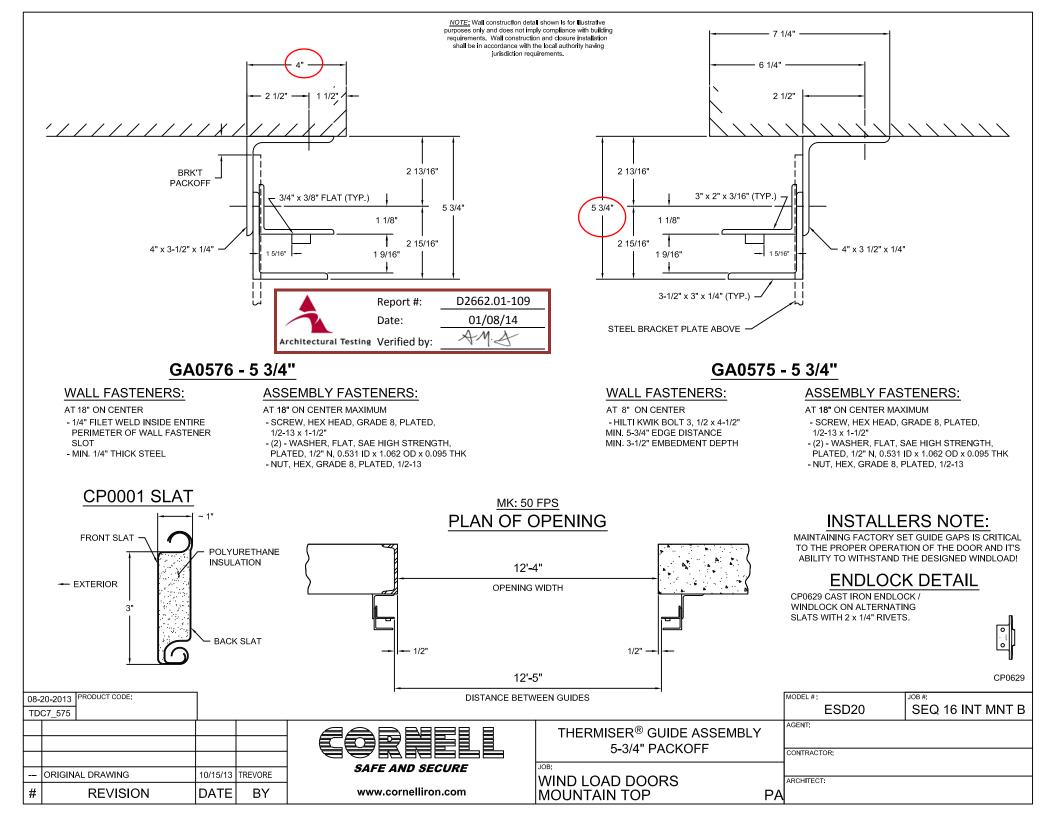

	100 million (100 m
	DRAWING BY: SHEET DAK 4 DAK 4 04/01/13
	drawing: 36" STEEL TEST CHAMBER
NCLOSURE SHOWN)	Architectural Testing
	PROJECT NAME: TAS 201, 202, 203 CLIENT: CORNELL SAFE AND SECURE
48/13	PROJECT NO. C6863

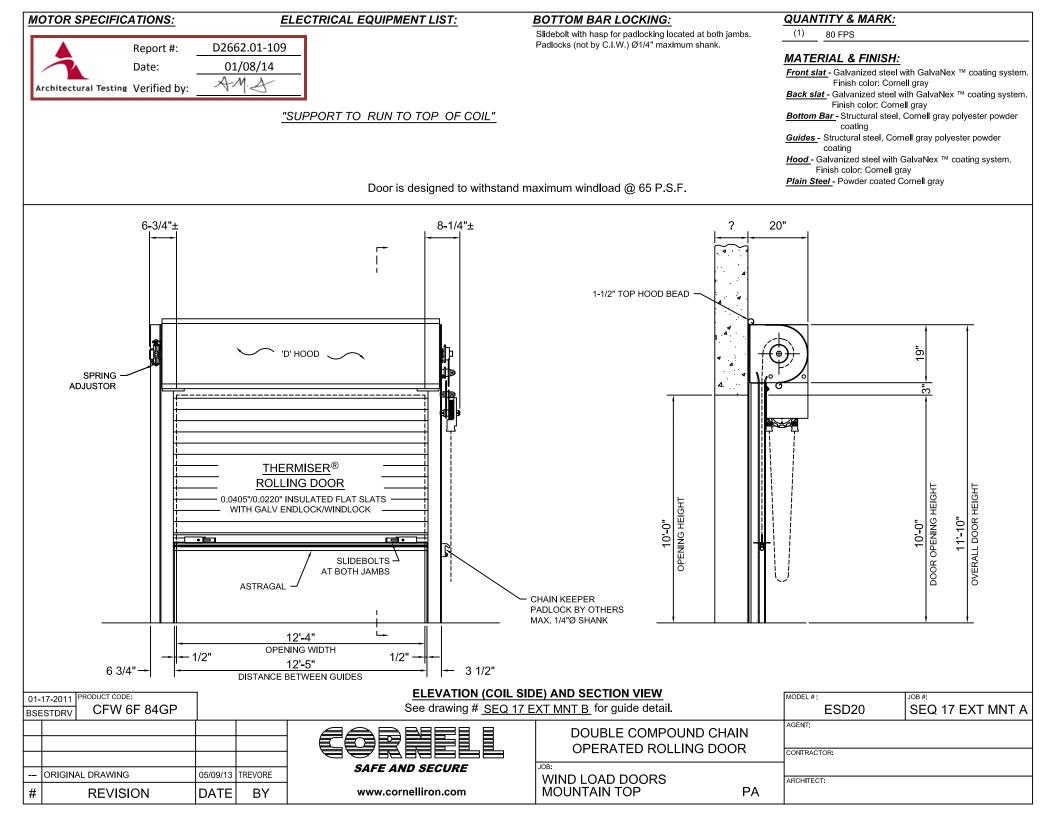
		100	
		SHEET	
		DRAWING BY:	DATE: DATE: 04/01/13
			1/2" STEEL TEST CHAMBER
			TEST
		DRAWING:	½" STEEL
			Architectural Testing
GUIDE ASSEMBLY ENCE 14 & 15 ONLY)		PROJECT NAME: TAS 201, 202, 203	CLIENT: CORNELL SAFE AND SECURE
	~5/2 4/8/13	PROJECT NO.	C6863

		SHEET 6 7 OF
		DRAWING BY: DAK DATE: 04/01/13
		HAMBER
		TEST OF
SURE N)		drawing: 1/4." STEEL TEST CHAMBER
		Architectural Testing
		PROJECT NAME: TAS 201, 202, 203 CLIENT: CORNELL SAFE AND SECURE
URE N)		PROJECT NAME: TAS 201, 202, 203 CLIENT: CORNELL SAFE AND SEC
		PROJECT CLIENT:
	5/E 9/8/13	PROJECT NO. C6863






Appendix E


Drawings

