

Letter of Justification -HA8 Hurricane & Seismic Clip Allowable Loads

August 20, 2009

The Quick Connector HA8 Hurricane & Seismic Clip is an 18 gauge (minimum thickness with coating 0.0466") steel clip used to fasten joists, rafters and trusses to the wood top plates of walls. Each clip is $1^{1}/_{4}$ " wide and 8" long with a 90 degree twist occurring over the center 2 inches. The HA8 clip is attached to the structural framing members with 5-10dx1-1/2" (0.148x1-1/2") nails at each end. The clips are intended to resist uplift forces, as well as lateral forces applied parallel to the top of the wall. The product model number and the Quick Tie logo are stamped onto each clip. The clips are manufactured from ASTM A 653, Structural Steel, Grade 50, Class 3 (F_u = 70 ksi, F_y = 50 ksi) steel galvanized with a G90 zinc coating. The HA8 hurricane anchors are manufactured by Quick TieTM Products, Inc., 4141 Southpoint Drive East, Suite B Jacksonville, FL 32216.

Testing of the HA8 clip is pending. In the interim, the allowable loads provided in the following table are to be used, assuming the HA8 clip is installed per the manufacturers installation instructions. The tabulated loads are less than those calculated for the fastener connection strength and the steel strength of the clip (see attached), and are no greater than the allowable loads for products manufactured to the same specifications, but with a lower grade steel. Because of this, we believe the allowable loads provided in the following table are conservative and justified.

Respectfully,

Kirk Grundahl, President Qualtim

Harvel Crumley, C.E.O. Quick Tie Products, Inc.

Letter of Justification HA8 Hurricane & Seismic Clip Page 1 of 8

HA8 Hurricane & Seismic Clip Allowable Loads ^{1,2,3} (lbs)											
Species Group		Load Load	Direction - Duration F	Uplift actor	Load Direction - F2						
(Specific Gravity)	Type To Rafter/Truss		To Plates	1.00	1.33	1.60	1.00	1.33	1.60		
So Pine (0.55)	8d (0.131x1-1/2")	5	5	395	525	630	40	55	65		
	10d (0.148x1-1/2")	5	5	465	620	745	45	65	75		
Douglas fir-Larch (0.50)	8d (0.131x1-1/2")	5	5	395	525	630	40	55	65		
	10d (0.148x1-1/2")	5	5	465	620	745	45	60	75		
Spruce- Pine-Fir (0.42)	8d (0.131x1-1/2")	5	5	320	425	510	40	55	65		
	10d (0.148x1-1/2")	5	5	355	470	565	45	60	75		

Notes: 1. Clips may be installed on both sides of the framing member for twice the load.

The tabulated loads are valid for clips installed on the inside or the outside of the wall. However, to maintain a continuous load path for uplift connections in close proximity to one another, such as truss-to-plate and plate-to-stud should be installed on the same side of the wall.
Refer also to the General Notes for Tables section provided in the Testing & Engineering Report, TER No.

Refer also to the General Notes for Tables section provided in the Testing & Engineering Report, TER No.
0908 - Quick Tie[™] Systems and Quick Connectors for additional information.

Fastener Connection Strength

Lateral Resistance (Ibs)																
		Steel	Fasteners		Southern Pine (SG=0.55)				Douglas Fir - Larch (SG=0.50)			SPF (SG=0.42)				
Model	GA	Design			Lateral Total L		Lateral Resistance (lb)		Lateral	Total Lateral Resistance (lb)		Lateral	Total Lateral Resistance (lb)			
No.	0.71	Thickness (in)	Size	No.	Resistance Per Nail (lb)	1.00	1.33	1.60	Resistance Per Nail (lb)	1.00	1.33	1.60	Resistance Per Nail (lb)	1.00	1.33	1.60
		0.0451	8d (0.131x1.5")	5	106	530	705	848	98	490	652	784	84	420	559	672
	19			5	106	530	705	848	98	490	652	784	84	420	559	672
	10		10d (0.148x1.5")	5	126	630	838	1,008	116	580	771	928	99	495	658	792
				5	126	630	838	1,008	116	580	771	928	99	495	658	792
	Withdrawal Resistance (Ibs)															
HA8		Steel			Southern Pine (SG=0.55)			Douglas Fir - Larch (SG=0.50)				SPF (SG=0.42)				
	GA	Design Thickness (in)	Fasteners	Withdrawal	Nithdrawal Total Withdrawal Resistance (lb)			Withdrawal	val Total Withdrawal Resistance (lb)			Withdrawal	ithdrawal Total Withdrawal Resistance (lb)			
	C. T.		Size	No.	Resistance Per Nail (lb)	1.00	1.33	1.60	Resistance Per Nail (lb)	1.00	1.33	1.60	Resistance Per Nail (lb)	1.00	1.33	1.60
			8d (0.131x1.5")	5	60	298	397	477	47	233	310	372	31	153	203	244
	19	0.0451		5	60	298	397	477	47	233	310	372	31	153	203	244
	10	0.0451	10d (0.148x1.5")	5	67	335	445	535	52	262	348	419	33	167	223	268
				5	67	335	445	535	52	262	348	419	33	167	223	268

Steel Strength of Clip

Design thickness (in), t _e =	0.0451	Yield strength of member (psi). F_{y} =	50.000	Ξ,=	1.67
Gross width (in), $W_{\alpha} =$	1.12	Tensile strength of member (psi), Fu	= 70.000	Ξ,=	2.00
Hole diameter (in) =	0.1562		-,	l l	
Total number of holes =	1				
Net width (in), W _n =	0.9638				
Gross area of cross section (in ²), $A_g =$	0.050512				
Net area of cross section (in ²), $A_n =$	0.043467				
Nominal strength of m Allowable design strength of m	ember loaded in tens ember loaded in tens	sion (lb), $T_n = 2,526$ sion (lb), $T_a = 1,512$			
b) Fracture in net section away from connections					
Nominal strength of m	ember loaded in tens	sion (lb), T _n = 3,043			
Allowable design strength of m	ember loaded in tens	sion (lb), $T_a = 1,521$			

Fastener Connections - Section E3 of AISI Standard - North American Specification for the Design of Cold-Formed Steel Structural Members

Section E3.3.1 Strength (Resistance) without Consideration of Bolt Hole Deformation

 P_n (lbs) = 5,580

2,536

 P_{allow} (lbs) =

of connected part

 $W_{\alpha}(in) =$

1.12 t (in) = 0.0451

1

1

0.25 $A_n(in^2) = 0.07971064$ F_t (psi) = 70,000

2.2

 $A_g(in^2) = 0.050512$

 $d_h(in) = 0.1562$ s' (in) =

=

n_b =

g (in) =

Fastener Connections - Section E4 of AISI Standard - North American Specification for the Design of Cold-Formed Steel Structural Members

Section E4.3.1 Connection Shear Limited by Tilting and Bearing

Section E4.3.2 Connection Shear Limited by End Distance

Section E4.4.2 Tension Pull-Over

Section 3.1 Bending

Section C3.1.1 Nominal Section Strength

Section 3.2 Shear

Section 3.2.1 Shear Strength of Member without Holes

