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1. Executive Summary

Existing static and cyclic water penetration test procedures for building envelope systems apply enveloped
pressure and wetting conditions to simulate hurricane wind and wind-driven rain (WDR) effects. While they
serve as a good first approximator for evaluating product performance, these procedures have not benefited
from advances in scientific knowledge and technology that have occurred over the last several decades. In
this research project, the investigator assessed the need for modernization of water penetration test
procedures used for product approval by conducting experimental research using low-cost and
straightforward-to-use technologies to compare “simplified” and “real-world” water penetration resistance
testing.

This final report details the efforts and outcomes of all tasks listed in Section 4. The investigator began by
convening an advisory group to guide the research program. With feedback from the advisory group, a test
matrix was developed to study parameters that influence water ingress through generic building envelope
penetrations (i.e., slot openings). The slot openings were subject to pressure sine sweeps of varying
amplitude to investigate potential amplitude-dependent threshold frequencies above which applied
pressure fluctuations no longer affect the water flow through the building envelope. This process is
analogous to system identification procedures used in many fields of engineering to characterize dynamic
systems. The application of extreme wetting rates was also studied to determine if a maximum upper bound
for wetting exists. Staging and setup of the testing area was completed. Generic slot specimens and their
fixtures were designed and fabricated. Round 1 testing was conducted, and summary data are presented
in the report. The investigator presented the interim report for the research program to the Florida Building
Commission’s (FBC) Hurricane Research Advisory Committee (HRAC) by teleconference on March 23,
2023.

With feedback received during the HRAC meeting, additional advisory group members were identified and
invited to provide guidance on subsequent rounds of testing. Two additional rounds of experimental testing
were planned on real fenestration units with final input from the advisory group provided during the
subsequent advisory group teleconference. Hurricane passage simulations were developed from available
data and methodologies found in literature. The representative selection of operable windows and doors
was made as a first step in understanding wind-driven rain (WDR) water ingress through building envelope
systems. From the resulting analysis, guidance was developed regarding the implementation of improved
standard testing procedures. A method to relate existing testing procedures to new methods of testing
based on the results from the research was also explored.

2. Disclaimers

e This report presents the findings of research performed by the University of Florida. Any opinions,
findings, and conclusions or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the sponsors, partners, and contributors.

e The experimental hurricane test procedures presented herein is not intended (i) to be performed in
accordance with any then-current or -applicable industry standards, laws, rules, regulations,
building codes, or other guidelines for products of this type, or (ii) to determine whether the tested
products comply with then current or -applicable industry standards, laws, rules, regulations,
building codes, or other guidelines for products of this type. The testing is intended to apply UF’s
facilities, knowledge, research, and other information regarding unexpected hurricane and other
unusual storm related conditions to various products to identify new testing procedures that do not
currently exist and which may enable manufacturers to improve their products.

3. Applicable Water Penetration Test Standards/Procedures

e TAS 202-94 — Criteria for Testing Impact and Nonimpact Resistant Building Envelope Components
Using Uniform Static Air Pressure Loading

o  AAMA/WDMA/CSA101/I.S.2/A440-22 — Standard Specifications for Windows, Doors, and Unit
Skylights



AAMA/WDMA/101/1.S. 2/NAFS-02 — Voluntary Performance Specification for Windows, Skylights
and Glass Doors

ASTM E 331 — Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors,
and Curtain Walls by Uniform Static Air Pressure Difference

ASTM E 547 — Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors,
and Curtain Walls by Cyclic Static Air Pressure Difference

ASTM E1105 — Standard Test Method for Field Determination of Water Penetration of Installed
Exterior Windows, Skylights, Doors and Curtain Walls by Uniform or Cyclic Static Air Pressure
Difference

ASTM E2128 — Standard Guide for Evaluating Water Leakage of Building Walls

4. Scope of Work

Task 1 - Form a stakeholder advisory group to guide the research program

Task 2 - Simulate hurricane-like wind pressure loading and wind-driven rain events from available
data with input from the advisory group for application on selected building envelope systems, apply
standard static and cyclic testing to produce a baseline for comparison, and apply pressure sine
sweeps to determine the (amplitude-dependent) threshold frequency at which applied pressure
fluctuations no longer affect the flow through the building envelope

Task 3 - Analyze the data collected during the physical testing campaign at UF and proceed with
data interpretation in a format that can be utilized by the FBC and industry

Task 4 - Develop guidance regarding the implementation of improved standard testing procedures
based on results from the test campaign, and develop a method to correlate existing testing
procedures to new methods of testing based on the results from the research

5. Deliverables

Interim report by February 28, 2023 — Interim report detailing progress to date on all tasks. The
report will serve as a progress update that details the current state of research, preliminary results,
and descriptions of any issues that may have been encountered. In addition, the interim report will
be formally presented to the FBC’s Hurricane Research Advisory Committee at a time agreed to
by the Contractor and Department’s Program Manager. The due date may be extended with the
approval of the Department’s Program Manager.

Final report by June 1, 2023 containing deliverables of the four tasks discussed in Section 4. This
will include summary and analysis of data acquisition, wind pressure/wetting time histories, and
water infiltration and displacement time histories. In addition, the final report will be formally
presented to the FBC’s Hurricane Research Advisory Committee at a time agreed to by the
Contractor and Department’s Program Manager. The due date may be extended with the approval
of the Department’s Program Manager.

6. Project Overview

The project investigated the following research areas and limitations of current standard test methods:

Steady pressure/wetting conditions are not physically realizable in a hurricane. Turbulence in the
upwind flow and the flow distortion around the building cause significant spatiotemporal variation
in pressure acting on the building surface. Only applying a steady “worst case” load fails to simulate
the “lulls” that promote drainage — a principal design consideration for product manufacturers

Cyclic pressure test procedures allow for lulls that promote drainage but are not representative of
real-world rates of pressure fluctuation



e The origin and applicability of the wind load intensity definition (e.g., 15% or 20% of the design
pressure for fenestration in water infiltration tests) remains unclear and is a major but easily
addressable knowledge gap

e The basis for the current minimum wetting rate (i.e., 5.0 gph/sf) originates from trial-and-error
testing to determine the threshold required to cause uniform sheeting of water on a curtain wall. It
does not consider key factors such as climatology, approach wind speed, location on the building,
etc.

¢ Defining “failure” as a single drop passing into the building interior is not a representative measure
of water damage, as the unmanaged accumulation of water over an entire hurricane episode is the
principal driver for damage to walls, interiors, and building contents

Task 2 (see Section 4) is broken up into the three rounds of testing. The experimental equipment used in
this project is described in Section 7. For Round 1, the test matrix is shown in Section 8.1 and the test
results are presented in Section 8.2. Focus areas included pressure sine sweep testing to determine the
(amplitude-dependent) threshold frequency at which applied pressure fluctuations no longer affect the flow
through the building envelope. The application of extreme wetting rates exceeding the industry-accepted 5
gph/sf was also studied to determine if a maximum upper bound for wetting exists. To explore these
phenomena, Round 1 used a reconfigurable experimental setup with generic features to ensure that the
findings are generalizable to real fenestrations in subsequent rounds of hurricane-like wind pressure testing.

Feedback from Advisory Committee: As part of Task 1, the investigator convened an advisory group
formed by members of the Building Envelope Science Institute (BESI), the American Wood Council (AWC),
the Insurance Institute for Business and Home Safety (IBHS), the Miami-Dade Product Control Division,
and fenestration manufactures to discuss issues related to water ingress through building envelop systems.
The first teleconference was held on February 02, 2023. The group agreed to proceed with the Round 1
test plan discussed herein. The group also agreed that additional standard test procedures (e.g., ASTM
E331 and ASTM E547) should be performed on all fenestrations to provide a baseline for comparison—
these were included in Rounds 2 and 3 of experimental testing.

After presenting the project at the HRAC meeting by teleconference on March 23, 2023, additional members
were added to the advisory group including members of the Fenestration Glazing Industry Alliance (FGIA),
an additional member from IBHS, and additional product manufacturers. Guidance was provided on the
types of specimens and sourcing options for Rounds 2 and 3 of testing. Valuable feedback was provided
on the test matrix and standard testing procedures to be conducted for baseline comparisons. For Rounds
2 and 3, the hurricane wind simulation development is shown in Section 9.1, the test matrix is shown in
Section 9.2 and the test results are presented in Section 9.3. Focus areas included hurricane wind pressure
and wind-driven rain loading on fenestrations. Major findings are listed in Section 10, considerations and
limitations of the research project are listed in Section 11, guidance on the implementation of improved
standard testing procedures are presented in Section 12, and references are listed in Section 13.

Major Activities: The major activities (conducted with the assistance of laboratory staff) included:

e Staging and setup of the testing area, including tuning of the experimental equipment’s closed-loop
control system to apply sinusoidal pressure fluctuations, was performed along with inspection
checkouts of the individual system components

e Design of test specimens was completed with fabrication followed shortly thereafter. Detail sheets
for the reconfigurable assembly can be found in Appendix A

e Testing of generic test specimens
e Construction of five wall units to accept a range of specimen types

e Development of hurricane passage simulations using methodologies found in literature and
available data sources such as the NOAA Hurricane Research Division H*Wind surface wind field
analyses, the NIST Aerodynamic Database, and Global Precipitation Climatology Project



e Testing of operable windows and doors

e Data analysis and interpretation
7. Experimental Equipment

Time-varying pressure sequences were applied to window and door specimens using the closed-loop
control system of the High Airflow Pressure Loading Actuator (HAPLA) that receives feedback from an
absolute pressure transducer located within the test chamber (see Figure 1). The system actuates a high-
performance bi-directional valve which can produce rapid pressure changes. The face of the pressure
chamber accepts each test specimen installed in a wood stud-framed wall unit (Appendix B). Use of this
wall unit ensures that structural displacements under fluctuating wind loads, and thus impacts on specimen
leakage, are similar to real-world conditions. Water was applied to the specimen surfaces using a rain rack
system mounted inside the test chamber and calibrated to approximate field measurements of WDR
intensities. Structural displacements were measured using a set of laser displacement sensors targeted at
points of interest on each specimen (e.g., frame, glazing center points, and meeting rails). Water infiltration
was measured using a high-resolution scale and water collection system to detect water quantities ranging
from single droplets to gallons of flow per minute.

Figure 1. UF HAPLA experimental setup with wood stud-framed wall unit: A) Round 1 test specimen; and
B) Round 2 test specimen.

8. Round 1 - Learning Phase on Generic Specimens

Round 1 of experimental testing is broken into two parts (1A and 1B). Round 1A investigates the
relationships between applied sinusoidal pressure fluctuations with varying wind-driven rain intensities and
horizontal opening types that represent a range of generic operable window/door configurations. This type
of testing is intended to follow methods for system identification (Keesman and Keesman, 2011) common
in many fields of engineering such as aerospace, automotive, chemical, electrical, and mechanical. This
method is beneficial when a system is too complex to be easily modelled, and generally uses a black box
input-output relationship to generate a transfer function for a given system.



8.1. Specimens & Test Matrix

This experimental setup consists of slots with fixed width (w = 48 inches) and variable height (h), a trough,
and variable height risers (hg) to contain the water flowing through the slots. Figure 2 shows a schematic
view of the experimental setup with test panel geometry called out and an applied pressure sine sweep
trace input depicted near the top. Applied pressure (Py), wetting (Ry,pr), @and instantaneous flowrate (Q(t))
through the specimens were measured for each test. Only one opening type (i.e., horizontal or vertical) is
tested at a time. The other opening is sealed with a blank plate. Section A-A in Figure 2 shows the path
that water can take out of the test chamber. For given pressure and wetting inputs, the rate that water flows
out through the system is modulated by the combination of A and hy.
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Figure 2. Schematic diagram of Round 1 experimental setup.

Table 1 shows the relevant test variables. In Round 1A, three (3) horizontal opening specimens of varying
slot height h were evaluated under various pressure, wetting, and riser conditions. Each test was 10
minutes in duration and swept through five (5) frequencies of pressure from low to high for two (2) minutes
at each frequency. For each specimen, three (3) pressure amplitudes were tested at each of three (3)
wetting rates for a total of nine (9) tests. Additionally, each specimen was tested with four (4) riser conditions
resulting in a total of 36 tests per specimen.

The total set of tests run was 108 for a total of approximately 20 test hours (not including reconfiguration
time). Time permitting, additional horizontal opening specimens will be added to Round 1A. Round 1B will

follow the Round 1A test matrix for a vertical opening and will be completed shortly after submission of the
interim report.

Table 1. Round 1 configurations and experimental parameters.

Sine Sweep Pressure Wetting Rates | Slot Heights Openings Riser Heights
Frequencies Amplitudes
Nomenclature f A Rywor h N/A hg
Units Hz psf gph/sf inch N/A inch
Quantity 5 3 3 3 2 4
Variable 0.2,0.4,0.6, |5.22,15.67,31.34| 5.2,15.7,31.3 | 1/16,1/8,1/4 | Horizontal, | 0.5,1.0,2.0,4.0
0.8,1.0 Vertical




8.2. Results & Discussion

In accordance with Task 3, data analysis from Round 1A of testing is presented in Figures 3-6. An example
of one sine sweep segment is shown in Figure 3 to illustrate the sine sweep process, which occurs as
follows: a sinusoidal pressure trace is input into the control system; the proportional integral derivative (PID)
controller follows the trace; and the resulting applied pressure and flow out of the system is measured. The
three subplots in the figure show the target pressure (Pr) and measured pressure (Py;) fluctuations produced
by the closed-loop HAPLA control system, the measured water ingress (W;y) using the high-resolution scale,
and the flow rate (Q) calculated by the taking the time derivative of the scale measurement. The observed
water ingress behavior is complex, but in general the behavior of the system to catch water and permit
drainage during lulls in the pressure is observed as expected. This can be observed in Figure 3C, where
the flowrate increases and decreases in response to the applied pressure (with phase lag caused by the
travel time from the trough to the scale).
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Figure 3. Example application of a two-minute 0.2 Hz pressure trace to h = 1/8 inch slot specimen with a
peak pressure of 10.44 psf, a 0.5 inch riser height, and a 7.5 gph/sf wetting rate: A) applied pressure
trace; B) water ingress from scale measurement; and C) calculated flowrate.

Results from each experimental configuration (see Table 1) are plotted in Figures 4-6. Each figure contains
12 subplots, one for each combination of riser heights (4) and applied peak pressures (3). Within each
subplot, the three wetting rates (3) are shown. An individual subplot shows the frequency-dependent
average flowrate (Q) for a given test configuration. The results from Round 1A indicate that a threshold
wetting rate has not been reached since all tests for which there is significant water ingress show increases
in ingress as wetting increases even beyond 5 gph/sf. The results also indicate that a threshold (maximum)
frequency has not yet been reached and in some cases the water ingress begins to increase at the
maximum applied frequency. This indicates that frequencies higher than 1 Hz may need to be included in
the hurricane wind pressure simulation traces. One clear trend is the effectiveness of risers in reducing
average flowrate (Q) regardless of the other test parameters. Also, riser effectiveness reduces as pressure
increases (i.e., counteracting the backpressure created by the riser).

Data from the h = 1/16 inch slot opening is shown in Figure 4. The general trend for this slot opening is for
water ingress to increase as frequency increases, which is counterintuitive since the overall system



hydraulic/pneumatic impedance should increase as frequency increases. Data from the slot opening h =
1/8 inch is shown in Figure 5. In general, as riser height increases, flow through the system decreases as
expected, and as peak pressure increases, flowrate through the system increases. In some cases, water
ingress reaches a minimum at 0.8 Hz before increasing again. Data from the slot opening h = 1/4 inch is
shown in Figure 6. In these tests, the riser is an effective strategy for preventing water ingress for all slot
openings. Data from these tests will be shared with the advisory group.

In lieu of Round 2B testing, which was decided to be of limited additional value, the trends discussed above
were investigated in supplemental Round 1A testing conducted to further explore the relationships between
wetting rates and fluctuation frequency. The results of these tests can be found in Figure 7, where an
additional slot opening was tested with increased upper limit on frequency and increased wetting rates were
also tested.

Figure 7 shows how the combination of thin slot (h = 1/32 inch) and large riser (hy = 4 inch) nearly eliminates
flow through the generic specimen at all input levels of pressure and wetting. This is an ideal result, and if
a real specimen is able achieve this level of performance, it is likely to perform well in a real extreme wind
environment. Additional increased wetting rates were also tested since the initial Round 1A testing did not
show a plateauing of water ingress through the systems.
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9. Rounds 2 & 3 — Operable Window & Door System Water Ingress Testing
9.1. Development

To expand on Task 2 with “real-world” loading conditions, the investigator completed development of
methodologies built on prior work (Walker et al., 1988; Jancauskas et al., 1994; Kopp et al., 2010; Lopez
et al., 2011) to simulate hurricane-like wind pressure loading events for application on building envelope
systems in Rounds 2 and 3 of testing. Fluctuating applied pressure sequences and WDR rates were
synthesized from available data in the following steps.

Wind Speed Records: A hurricane passage time history was derived empirically from historical hurricane
track and intensity records from the front right quadrant of intense hurricanes representative of a design-
level event. These records can be found in the NOAA Hurricane Research Division H*Wind surface wind
field analyses. Many severe storms including Hurricanes Andrew, Charley, Dennis, lke, and Ivan were
considered. From these data, a three-second gust wind speed (1) envelope ranging from 78-190 mph over
the span of three hours at a height z = 33 ft in open terrain (i.e., Exposure C; z, = 0.03 m full-scale) was
identified as a worst-case hurricane passage. The hurricane passage time history in Figure 8 was then
developed following Walker et al., 1988, where a translating intense tropical cyclone’s wind intensity and
direction are calculated with respect to a stationary reference location of interest—in this case the windward
face of a low-rise building. As the cyclone approaches the location of interest, the combination of
translational and rotational wind velocities generate wind direction changes and intensities at an increasing
rate up to the point of eye wall passage, at which point the simulation concludes. The point at which the
wind direction is at 45 degrees or greater is when the positive surface pressure fluctuations will be
significant. Thus, the last hour of the simulation is critical and has been divided into 10 stationary ergodic
segments of incrementally increasing wind angle.
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Figure 8. Hurricane passage simulation referenced to z = 33 ft in Exposure C. Black lines indicate the
continuous functions for each parameter and the red dots indicate the values used for each segment in
the last hour of the passage simulation when wind angle is greater than 45 degrees.

Fluctuating Surface Pressure Coefficient Records: Fluctuating surface pressure records were extracted
from model configuration jp1 found in the NIST Aerodynamic Database, which is a data repository for a
large number of boundary layer wind tunnel experiments on bluff bodies representing simplified low-rise
structures. Many wind directions were considered to determine a representative worst-case mean pressure
time history tap location for a worst-case open terrain condition (Exposure C). These records and tap
locations can be found in Appendix C. The model-scale pressure coefficient (C,) records were converted
to an equivalent full-scale dynamic pressure in the following steps. Scaling of the non-dimensional C,
records is achieved using the reduced frequency relationship

(P sz = (7) ®
4 Model—scale 4 Full—scale
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where f is the sampling rate (i.e., frequency) of the pressure sensor, L is a characteristic geometric length
dimension of the subject building, and V is the velocity referenced at a specified and height and over a
specified duration. The C,, values are defined by the following

C. = P — DPref (2)
L |
jpaiTVrzef

where p is pressure measured on the model surface, p,.f is the reference static pressure and V,.., is the
reference mean velocity—usually taken at upper level of wind tunnel or mean roof height (averaging
duration must be specified at roof height)—and p,;, is the mass density of air. To convert wind tunnel data
to full-scale data, Eq. (2) is rearranged and the non-dimensional C, records are converted to full-scale
surface pressures using

1
p= Epairvrzef Cp (3)

The experiment selected for this project (jpl) is a 1:100 scale WERFL-like model with an eave height of 40
ft full-scale (FS) tested in open country (Exposure C; z, = 0.03 m FS) approach flow conditions. When
strung together sequentially, the fluctuating pressure segments simulate the passage of a hurricane
including changes in wind speed, direction, and precipitation. Two taps were selected near the upper corner
of the windward wall (Appendix C): the first tap selected (211) is where the average mean pressure
coefficient (Cp) values for the wind direction range of 45-90 degrees (angle relative to wall surface) were
found to be a maximum and the tap height is z = 25 ft full-scale; and the second tap (304) was selected
with the maximum average €, and maximum average RMS C, values of all the model wall taps (Appendix
D). After the datasets were scaled, a third-order lowpass Butterworth filter was applied to the data with a
corner frequency of f, =2 Hz (informed by sine sweep testing). The timing of the passages and tap locations
on the building were selected to nominally create increasingly severe conditions with each new segment.
The wind angle range of 45-90 degrees, where 45 degrees is a quartering wind and 90 degrees is
perpendicular to the wall of interest, was selected because wind angles less than 45 degrees were found
to be predominantly in suction. These angles are not expected to significantly contribute to water ingress
due to the net negative pressure on the specimen surface.

Wind-drive Rain Simulation: Velocity-dependent wetting rates (Rypgr) Were derived using the following
equation from Blocken and Carmeliet (2004):

RWDR = WC(VRh COS(@) (4)

where W = 0.5 is the wall factor (i.e., the fraction of WDR rain droplets impacting the wall), « = 0.0671 sec/ft
is the WDR coefficient (inverse of raindrop terminal velocity), V is mean wind speed (see Figure 8), R, is
the horizontal rainfall intensity (i.e., raining falling vertically through a horizontal plane), and 8 is the angle
between the wind direction and the line normal to the wall. The linearly varying R, range chosen for this
project was 1-2 in/hr, which approximates rainfall rates for intense tropical cyclones and is based on data
from the Global Precipitation Climatology Project (Krajewski et al., 2000).

Complete Wind Passage Simulation: Figure 9 shows the complete simulation for the maximum C, record
strung together sequentially in 10 segments (Test 4; see Table 6). The variation of I, V, 6, Cp, Cp, and
Rypr are all shown for the most intense one-hour period of the hurricane passage. The instantaneous wind
pressure fluctuations, as well as the 10-minute and 1-minute moving average pressure fluctuations are also
shown. Probability densities and power spectra are also shown to reveal the changing distribution of
pressures as wind direction and intensity change. Figure 10 shows the same characteristics for the
complete simulation of the maximum Cp strung together sequentially in 10 segments (Test 5; see Table 7).
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9.2. Specimens & Test Matrix

The following two (2) rounds of experimental testing were planned with final input from the advisory group
provided during the third advisory group teleconference. Key aspects of hurricane-like wind pressure
loading simulation for application on building envelope systems were discussed with the knowledge gained
during Round 1 informing decisions regarding maximum wetting rates and applied cutoff frequencies.

Round 2. Atotal of five (5) operable window systems were identified, acquired, and tested. The specimens
were selected to be representative of available off-the-shelf products within the market and all
had Florida product approvals for water ingress. The final number of window specimens tested
was limited by time and product availability. Baseline ASTM standard tests were performed to
verify that specimens were undamaged and properly installed prior to sine sweep testing and
hurricane passage simulations.

Round 3. A total of three (3) operable door systems were identified, acquired, and two (2) were tested.
The specimens were selected to be representative of the available products within the market.
The final number of door specimens tested was limited by time and product availability. Baseline
ASTM standard tests were performed to verify that specimens were undamaged and properly
installed prior to sine sweep testing and hurricane passage simulations.

Rounds 2 and 3 of experimental testing investigated the relationships between applied pressure
fluctuations, varying WDR intensities, and the performance of commercially available operable window/door
systems tested using existing standard water penetration test procedures. The experimental design was
intended to investigate the ability of existing test procedures to predict the likely real-world performance of
operable window and door systems during the passage of a fast-moving intense compact tropical cyclone
similar to those previously experienced in the State of Florida (e.g., Hurricane Andrew). Figure 11 shows a
schematic view of the experimental setup with applied pressure trace input depicted near the top. Measured
pressure (Py), wetting (Rypr), and instantaneous flowrate (Q(t)) through the specimens were measured
for each test. The specimens and test matrix are described in the tables below.

w’ WP«W W'NW W'MW\WMMWM

............

Bl

.t (Hour)
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Figure 11. Schematic diagram of Rounds 2 and 3 experimental setup.
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Table 2 lists the specimens tested during Rounds 2 and 3 of the project. Operator types, design pressure
(DP) ratings, unit dimensions, and test standards indicated by the manufacturer are also listed for each
specimen. Specimens are anonymized to omit manufacturer name and Florida product approval number.

Table 2. Specimens tested for water penetration resistance.

Round | No. Operator Type DP Unit Size (in) Test Standards ASTM
(psf) W a

1 [Single-hung Window +65/-70 35.5 47.5|TAS 201 202 203 E331-00

2 |Double-hung Window +50/-50 | 33.75[ 48.75|AAMA/WDMA/CSA 101/I.S.2/A440-11|E547-00

2 3 |Twin Casement Window | +70/-90 52 62|TAS 201 202 203 E331-00

4 |Twin Awning Window +70/-90 52 62|TAS 201 202 203 E331-00

5 |Horizontal Slider Window | +50/-55 | 51.875[ 37.125|TAS 201 202 203 E331-00

6 |Gliding Patio Door +50/-50 | 71.25 79.5|AAMA/NWWDA 101/1.S.2/NAFS-02  |E547-00

3 7 |Single Outswing Door +70/-70 36 80|TAS 201 202 203 E331-00

8 |Single Outswing Door +65/-65 |35.5312(79.3125|TAS 201 202 203 E331-00

Table 3 lists the tests performed on each specimen in chronological order. For the specimens that use TAS
test standards (see Table 1), a pressure-only preload was applied (Test 0) prior to being subjected to water
infiltration testing (Test 1 and 2). This pressure-only preload test applied 50% of the positive pressure test
load (50% x 1.5 x DP rating) for 30 seconds followed by 1 minute of rest at no load. Then the full design
load (DP rating) was applied for 30 seconds followed by a 1 minute of rest at no load.

Table 3. Tests performed on each specimen.

No. Test Type

TAS Pressure-only Preloading (TAS Specimens Only)

1 | ASTM E331-00 (2016) Standard Test Method for Water Penetration of Exterior Windows,
Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference

2 | ASTM E547-00 (2016) Standard Test Method for Water Penetration of Exterior Windows,
Skylights, Doors, and Curtain Walls by Cyclic Static Air Pressure Difference

3 | Round 1 Sine Sweep Extended Test Procedure

4 | Maximum Average C, One-Hour Hurricane Wind Pressure and WDR Simulation

5 | Maximum Average Cp, One-Hour Hurricane Wind Pressure and WDR Simulation

Table 4 lists the parameters used for the ASTM standard tests conducted. These parameters include
chamber pressure, wetting rate, test duration, cycles, and pass/fail criteria. Each specimen was fully drained
after Test 1 prior to being subjected to Test 2. Full positive test loads, negative loads, and air infiltration
were not tested for this project.

Table 4. ASTM E331 and ASTM E547 standard tests conducted for each specimen.

Test Parameter ASTM E331 ASTM E547
Test Number 1 2
Chamber Pressure (psf) 15% of positive DP Rating 15% of positive DP Rating
Wetting Rate (gph/sf) 5 5
Cycles 1 4
Cycle Duration (min) 15 1 min off / 5 min on
Full Duration (min) 15 24
Pass/Fail Criterion One drop past the plane One drop past the plane

If any specimen failed Test 1 or 2 (ASTM standard tests), the failure was noted and the specimen and/or
installation was considered defective. In this situation, the unit was inspected, necessary adjustments were
made, and the standard tests were run again. If issues with the unit could not be resolved, the unit was
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omitted from final analysis. Upon completion of Tests 1 and 2, the specimen was subjected to the sine
sweep tests conducted during Round 1 for later comparison to the generic specimen test results.

Table 5 shows the relevant test variables for the sine sweep tests conducted on each specimen. Each test
was 14 minutes in duration and swept through seven (7) frequencies from low to high. For each specimen,
three (3) pressure amplitudes were tested at each of five (5) wetting rates for a total of 15 sine sweep tests.
Once Tests 1, 2, and 3 were completed, two (2) one-hour duration hurricane simulations were run for each
specimen (Tests 4 and 5).

Table 5. Sine sweep conditions tested for each specimen in Test 3.

Sine Sweep Frequencies Aizgﬁfuucggs Wetting Rates
Nomenclature f A Rywpr
Units Hz psf gph/sf
Quantity 7 3 5
Variable 0.2,0.4,0.6,0.8,1.0,1.2,1.4 5.2,15.7,31.3 2.5,5.0,7.5,10.0,12.0

The one-hour hurricane passage tests (Tests 4 and 5) were each broken into 10 stationary ergodic
fluctuating surface pressure segments. Table 6 shows relevant statistics for Test 4—the first hurricane wind
pressure simulation (see Figure 9). The table shows segment number, segment duration, wind angle, mean
wind speed, 3-second gust wind speed, Cp, Cp, mean pressure, peak pressure, RMS pressure, and wetting
rate.

Table 6. Maximum Average C, One-Hour Hurricane Wind Pressure and WDR Simulation Statistics.

Test 4: Hurricane Simulation No. 1

Segment No. 1 2 3 4 5 6 7 8 9 10
Duration (min) 12.58 8.29 6.99 6.08 5.44 4.99 4.67 4.46 4.34 2.15
Wind Angle (degrees) 45 50 55 60 65 70 75 80 85 90

Mean Wind Speed (mph) 93.36] 99.52| 104.87| 109.44| 113.28] 116.4| 118.82| 120.54| 121.57 121.91
3-sec Gust Speed (mph) | 140.91| 150.22| 158.29| 165.19| 170.98] 175.69| 179.34| 181.94| 183.5 184.02

Cp 0.63 0.72 0.82 0.93 0.95 0.96 0.96 0.9 0.91 0.83
Cp 1.97 2.18 2.61 2.77 2.76 2.97 2.9 2.72 2.62 2.58
Mean Pressure (psf) 12.56] 16.92 21.5] 26.43] 29.58] 29.32] 31.71f 30.73f 32.31f 30.71
Peak Pressure (psf) 38.08] 48.21] 62.51] 73.51] 77.78] 87.07] 86.57| 82.82 81.44| 84.89
RMS Pressure (psf) 13.82 18.2 22.76] 28.39] 31.46] 31.11] 33.46( 32.99] 34.33] 33.15
Wetting Rate (gph/sf) 2.25 2.95 3.65 4.34 4.99 5.61 6.16 6.64 7.05 7.36

Table 7 shows relevant statistics for the 10 stationary ergodic segments of the second one-hour hurricane
wind pressure simulation (see Figure 10), The table shows segment number, segment duration, wind angle,
mean wind speed, 3-second gust wind speed, Cp, C», mean pressure, peak pressure, RMS pressure, and
wetting rate.

Table 7. Maximum Average C, One-Hour Hurricane Wind Pressure and WDR Simulation Statistics.

Test 5: Hurricane Simulation No. 2

Segment No. 1 2 3 4 5 6 7 8 9 10
Duration (min) 12.58 8.29 6.99 6.08 5.44 4.99 4.67 4.46 4.34 2.15
Wind Angle (degrees) 45 50 55 60 65 70 75 80 85 90

Mean Wind Speed (mph) 98.04| 104.51| 110.13| 114.93| 118.96| 122.24| 124.77| 126.58| 127.67 128.03
3-sec Gust Speed (mph) | 145.59| 155.21] 163.55| 170.68| 176.66] 181.53] 185.3| 187.99| 189.59| 190.13

Cp 0.65 0.77 0.86 0.95 0.95 0.93 0.9 0.83 0.82 0.72
Cp 2.18 2.3 2.95 3.04 2.88 3.28 3.1 3.46 2.62 2.56
Mean Pressure (psf) 14.17] 19.79] 24.91 29.77 33.62| 31.88] 31.31] 31.57| 30.66f 29.37
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Peak Pressure (psf) 45.16] 51.74] 74.14] 82.28] 90.13] 95.28] 88.03| 100.79| 82.37| 85.94
RMS Pressure (psf) 16.27| 21.48| 26.42| 32.03] 35.88| 33.88] 33.79] 34.23] 33.17| 31.69
Wetting Rate (gph/sf) 2.36 3.1 3.83 4.55 5.24 5.89 6.47 6.98 7.4 7.73

Each specimen was subjected to Test 1 for 15 minutes and Test 2 for 24 minutes (unless repeat runs were
required), Test 3 for 210 minutes, Test 4 for 60 minutes, and Test 5 for 60 minutes for a total specimen test
time of 369 minutes. The total test time for Rounds 2 and 3 was approximately 43 hours not including setup
and breakdown time. The setup and breakdown time roughly doubled the testing time.

9.3. Results & Discussion

In accordance with Task 3, testing outcomes (see Table 8), types of data collected, results and data
analyses (Figures 12-17), and observational notes from each specimen in Rounds 2 and 3 are described
in this section. The HAPLA operator noted observed issues with testing and listed the issues in the test
matrix. Those observations are detailed below.

Table 8. Testing outcomes for each specimen in Rounds 2 and 3.

Test Type
Specimen Test 1: Test 2: Test 3: Test 4: Test 5:
ASTM E331 | ASTM E547 Sine Sweeps |Hurricane Simulation No. 1|Hurricane Simulation No. 2

1 Pass Pass Complete Complete Complete

2 Fail Fail Not Run Not Run Not Run

3 Pass Pass Complete Complete Complete

4 Pass Pass Complete Complete Complete

5 Pass Pass Complete Complete Complete

6 Fail Fail Not Run Not Run Not Run

7 Fail Fail Not Run Not Run Not Run

8 Not Tested Not Tested Not Tested Not Tested Not Tested

Specimen 1 — Single-hung Window: After the successful preload of the specimen, ASTM E331 was
initiated. A perimeter sealant failure was observed occurring between the frame and buck, crossing the
interior plane. The frame was re-sealed to the buck and the test was run a second time. Another sealant
failure was observed and subsequently corrected. After another re-run, the perimeter frame seal leaks were
no longer observed, ASTM E331 was completed, and the subsequent ASTM E547 test experienced no
issues. After completion of the two ASTM tests, the specimen was cleared for subsequent testing. Sine
sweep testing was then conducted. During testing, a small pinhole leak through perimeter seal formed. As
pressure levels increased, water began flowing over corners of the sill dam. Additional pinhole leaks in
frame perimeter sealant developed, and water flowing over corners of sill dam increased. After sine sweep
testing was completed, the system was drained and Hurricane Simulation No. 1 was conducted successfully.
Hurricane Simulation No. 2 was also completed successfully.

Specimen 2 — Double-hung Window: During the first attempt at running the ASTM tests, leaks from
around the glazing at the bottom of the upper sash resulting in the specimen failing based on the stated
testing criterion. After inspecting and adjusting the specimen, the ASTM E331 test was re-run. Additional
leaks around the glazing were observed and the unit was determined to be unsuitable for further testing
and test sequence was terminated.

Specimen 3 -Twin Casement Window: After the successful preload of the specimen, ASTM E331 testing
was initiated. It was completed with no observed issues. ASTM E547 also experienced no issues. However,
after completion of the ASTM tests, the perimeter sealant began to leak as the sine sweep testing began.
The perimeter was re-sealed and retested with no further leaking reported. Pool from leak expanded slightly,
but did not flow to scale. Leak continued Noticed at 4 mins water bubbling through bottom left corner of
interior vent. By end of test leaking to step below. moderate leaking at lower left corner of left panel. 10
mins, moderate leaking at lower left corner of right panel, increases at 13 mins. 13 mins, sealant starts
leaking at lower right corner of specimen. 20 mins, whole lower left jam of right panel is leaking moderately.
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22 mins, top corners of left panel begin leaking lightly. 13mins, bottom corners of right panel begin to leak.
At 21 mins, bottom left corner of right panel and right seem of median leak heavier. After sine sweep testing
was completed, the system was drained and Hurricane Simulation No. 1 was conducted successfully.
Hurricane Simulation No. 2 was also completed successfully.

Specimen 4 — Twin Awning Window: After the successful preload of the specimen, ASTM E331 testing
was initiated. It was completed with no observed issues. ASTM E547 also experienced no issues. After
initiation of sine sweep testing, a minor leak on left side mullion joint formed. Minor leaking continued
through the duration of sine sweep testing. After sine sweep testing was completed, the system was drained
and Hurricane Simulation No. 1 was initiated. Leakage was concentrated at the bottom left corner, in the
channel, which filled over time before pouring over. There was also a slight leak at the bottom right corner,
in the channel, that was filling up much more slowly, but also very slightly leaking out of the channel. Water
would occasionally leak more profusely through the center-right handle/lock during high pressure spikes.
Additionally, during these spikes, water would pour through the far right lock. The simulation was completed
successfully. Hurricane Simulation No. 2 was also completed successfully with similar leakage and
observations described in hurricane 1 trace.

Specimen 5 — Horizontal Slider Window: After ASTM E331 was initiated, water began collecting in the
sill dam as expected. The water level stabilized and the unit passed. For ASTM E547, water successfully
filed and drained in the sill dam and also passed. Sine sweep testing was then initiated. At lower
frequencies, the filling and draining of the dam was regular and adequately contained the water. As
frequency increased and the entire window began to bend and flex more rapidly, water spillage increased
significantly, and the dam did not have time to drain. Water eventually began leaking through the fixed lite
glazing at both corners. Increased water coming from corners of left pane, water also splashing out from
right corner of right pane. After sine sweep testing was completed, the system was drained and Hurricane
Simulation No. 1 was conducted successfully. Hurricane Simulation No. 2 was also completed successfully.

Specimen 6 — Gliding Patio Door: During the first attempt at running the ASTM tests, leaks from around
the glazing and glide rail brush seals flowed into the track and overtopped the track riser within the first
minute of testing. The test was paused, the system was inspected for missing components and damage,
and the ASTM tests were re-run. However, the continued leaking from the same locations and the unit
failed ASTM testing. At that point the unit was determined to be unsuitable for further testing and test
sequence was terminated.

Specimen 7 — Single Outswing Door: During the first attempt at running the ASTM tests, leaks from
around the bottom corners of the door, flowing past the perimeter seal through a % inch gap in the seals
on both sides. The test was paused, the seals were adjusted, and the ASTM tests were re-run. However,
the specimen began leaking from other locations along the perimeter seal and after less than 5 minutes,
the unit failed ASTM testing. At that point the unit was determined to be unsuitable for further testing and
test sequence was terminated.

Specimen 8: Shipping delayed. Not tested.

Sine Sweep Testing: Sine sweep data from all successfully tested specimens are shown in Figure 12.
Each row of three subplots shows applied peak pressures (3) on an individual specimen. Within each
subplot, the five wetting rates (5) are shown for the frequency-dependent average flowrate (Q) of a given
test configuration normalized by specimen surface area (see dimensions in Table 2). The frequency
response of Specimens 1, 3, and 4 are essentially flat (i.e., weak frequency dependence). However,
Specimen 5 shows a strong frequency dependence with a maximum response occurring at ~1 Hz for the
higher wetting rates. This difference is likely due to the operator type and the water storage mechanisms
utilized. The performance of these specimens in Figure 12 are highly correlated with their performance in
the hurricane simulations (Figures 14-17).
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Figure 12. Rounds 2 and 3 pressure sine sweeps. Each row of subplots shows five (5) wetting rates and
three (3) pressure amplitudes applied to a given specimen.
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Hurricane Passage Testing: An example segment of the second one-hour hurricane passage segment is
shown in Figure 13 to illustrate the hurricane passage process, which occurs as follows: a fluctuating
hurricane surface pressure trace is input into the control system; the PID controller follows the trace; and
the resulting applied pressure and flow out of the system is measured. The three subplots in the figure show
P and Py, fluctuations produced by the closed-loop HAPLA control system, the measured Wy using the
high-resolution scale, and Q calculated by the taking the time derivative of the scale measurement. The
observed water ingress behavior is complex, but in general the behavior of the system to catch water and
permit drainage during lulls in the pressure is observed as expected. This can be observed in Figure 13C,
where the flowrate increases and decreases in response to the applied pressure (with phase lag caused
by the travel time from the trough to the scale). These behaviors are similar to those seen during sine sweep
testing.
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Figure 13. Example application of Test 5 pressure and wetting to Specimen 5 over a span of four
minutes: A) applied pressure trace; B) water ingress from scale measurement; and C) calculated flowrate.

Figures 14-17 show hurricane simulation results for the four (4) successfully tested specimens in Rounds
2 and 3. The left column of each figure shows Hurricane Simulation 1 and the right column shows Hurricane
Simulation 2 for side-by-side comparison. The top row of each figure shows instantaneous, 1-minute
moving average, and 10-minute moving average pressure applied to the specimens as well as ASTM and
design pressure levels. The second row shows instantaneous, 1-minute moving average, and 10-minute
moving average applied wetting rates and ASTM wetting levels. The third row shows instantaneous, 1-
minute moving average, and 10-minute moving average flowrate through the specimen normalized by
specimen surface area (see dimensions in Table 2) to remove the differences in flowrate between
specimens caused by specimen size differences. The bottom row compares the two hurricane simulations
cumulative water ingress normalized by specimen surface area. None of the specimens exhibited any
visible signs of structural failure during testing, and none of the measurements suggest that any
discontinuities in specimen performance occurred.
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Figure 14. Specimen 1 — Single-hung window hurricane simulations 1 and 2. Measured chamber
pressure, wetting rate, normalized flowrate, and normalized cumulative water ingress are shown.
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10. Major Findings

1. All specimens to pass both ASTM E331 and ASTM E547 (15% DP rating; see specimen DP ratings
in Table 2) experienced some amount of water ingress during sine sweep and/or hurricane passage
simulations. Furthermore, ingress rates varied widely without immediate indication of a cause. This
indicates that performance of a system in ASTM testing at water testing below 10 psf may not fully
predict behavior during an extreme wind event such as an intense tropical cyclone. These findings
may be related to the research areas listed below:

e Turbulence in the upwind flow and the flow distortion around the building cause significant
spatiotemporal variation in pressure acting on the building surface

e Cyclic pressure test procedures allow for lulls that promote drainage but are not
representative of real-world pressure fluctuation frequencies (e.g., f = 0.1-1.0 Hz)

e The origin and applicability of the wind load intensity definition (e.g., 15% or 20% of the
design pressure for fenestration in water infiltration tests) remains unclear and is a major
but easily addressable knowledge gap that will strongly influence existing pass/fail
performance

e The basis for the current minimum wetting rate (i.e., 5.0 gph/sf) originates from trial-and-
error testing to determine the threshold required to cause uniform sheeting of water on a
curtain wall. It does not consider key factors such as climatology, approach wind speed,
and location on the building

e Defining “failure” as a single drop passing into the building interior is not a representative
measure of water damage, as the unmanaged accumulation of water over an entire
hurricane episode is the principal driver for damage to walls, interiors, and building contents

2. There is no clear correlation between the units that passed the current test standards (which only
provide a binary pass or fail) and performance under hurricane passage testing.

3. Nearly half of the water ingress rated specimens selected for this project failed the ASTM standard
tests. Failures were due to identifiable reasons other than installation failure (e.g., leaking through
apparently undamaged specimen components). The cause(s) of these failures are currently
unknown.

4. The performance of a specimen during sine sweep testing is highly correlated with the performance
during hurricane passage simulations. This indicates that system identification (discussed in
Section 12) may be a promising option for future standard test methods of building envelop systems.
However, more testing is required to confirm this initial observation.

11. Considerations & Limitations

e This research is an initial study. It is a starting point that involved a small, limited number of types
and styles of windows and doors. It did not involve testing of all product types, like storefront,
curtainwall systems that fall outside the North American Fenestration Standard,
(AAMA/WDMA/CSA 101/1.S.2/A440, North American Fenestration Standard/Specification for
windows, doors, and skylights (NAFS)), above 10 psf.

e |t is important to note that the spectrum in this study is beyond the ASTM E331 (Standard Test
Method for Water Penetration of Exterior Windows, Skylights, Doors and Curtain Walls by Uniform
Static Air Pressure Difference) test for which the original product was designed.

e The research was not inclusive of all types of windows and doors, nor for the many other types of
products that contribute to the building envelope, for all types of construction applications.

e Due to the small number and range of units tested, the project lacked a statistically significant
sample size.

e Due to the limited sample size, further research may be warranted, especially to better understand
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how all building products perform under sine sweep testing.

e In future phases of research in this area, emphasis should be placed on evaluating all materials
that contribute to the performance of the building envelope, including cladding, roofing, etc.

e The research project involved a small number of off-the-shelf window and door products available
at “big box” stores. For example, it did not include storefront, curtainwall or other architectural
products typically designed for higher levels of performance.

e The off-the-shelf products sourced from “big box” stores to meet the tight timelines in this research
likely were shipped and handled more than products that are typically manufactured and delivered
directly to a dealer or to a jobsite. Therefore, questions remain as to how repeated shipping and
handling that typically exceeds real-life conditions may have impacted the performance of products
tested.

12. Guidance on the Implementation of Improved Standard Testing Procedures

Suggested Improvements to Current Standards: At this point it is difficult to relate the hurricane passage
tests back to the ASTM tests. Passing the ASTM tests does not appear to predict the performance of a
specimen, good or bad, in the simulated hurricane passages. Moving away from a binary pass-fail standard
would be beneficial as a single drop through the plane approach to quantifying passing does not hold under
hurricane-like conditions. More extreme loading inputs (pressure and wetting rate), less stringent pass/fail
criteria, and a continuum of performance ratings beyond pass/fail are recommended. These parameters
could be calibrated to better predict performance under the hurricane passage simulation.

Suggested Extension of Current Standards: Consideration of the frequency-dependent behavior in
building envelope systems is recommended as this appears to be related to performance under hurricane-
like conditions. Results from all rounds of testing indicate complex behaviors of window and door systems
subjected to fluctuating pressure loads with variable wetting. A path forward may be a process known as
system identification (Keesman and Keesman, 2011), which is common in many engineering fields where
system dynamics produce complex behaviors. The field of system identification uses statistical methods to
build mathematical models of dynamical systems from measured data. A common approach is to start from
measurements of system behavior subjected to external influences (inputs to the system) and try to
determine a mathematical relation between them without going into the details of what is actually happening
inside the system; this approach is called black box system identification. A common black box system
identification process uses a sine sweep input to measure an output of interest (e.g., flow out of the system)
similar to Round 1 testing.

A key finding in Rounds 2 and 3 was that specimen water ingress resistance in sine sweep testing was
highly correlated with water ingress resistance during the hurricane passage simulations. This indicates
that it may not be necessary to simulate a specific hurricane event provided that a specimen resists water
ingress during system identification. With the sine sweep process, a relationship between the magnitude
and phase of the input pressure to the magnitude and phase of the flow through the specimen can be
determined. If done frequency by frequency, this builds a transfer function model representing the system
dynamics. The model can be used to predict performance under hurricane passage loading rather than
direct physical testing using hurricane-like simulations.

One challenge to system identification in this case is that the system behavior is nonlinear and will depend
on the magnitude of the pressure and the wetting rate. To remedy this, several linearized models could be
identified at different operating conditions. Based on the wetting rate and RMS pressure in the hurricane
simulation at a given point in time, the predicted water ingress could be interpolated from the linearized
models that best match those conditions.

The benefit of this approach is that the industry already has a pulsed pressure test, so this is a smaller step
forward than a full hurricane simulation.
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Suggested New Standards: Moving toward a standardized approach to creating a hurricane passage
simulation following the procedure presented in Section 9.1 as an optional test is recommended. Many
considerations are required in creating such a standard test procedure for building envelope systems
including choice of geographic location, wind environment, location on building envelope, orientation of
building, angle of attack, and upwind terrain conditions.
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Appendix A. Round 1 Reconfigurable Test Specimen Details
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Appendix B. Wall Specimen Detail for All Experimental Configurations
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Appendix C. NIST Aerodynamic Database Model jpl Tap Layout
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Appendix D. NIST Model Pressure Coefficient Records
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Figure 18. Worst-case Cp time histor
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Figure 19. Worst-case C‘p time histories found at Tap No. 304.
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