FRSA/ TRI
Concrete and Clay Roof Tile Installation Manual – Fourth Edition
HIP AND RIDGE ATTACHMENT RECOMMENDATIONS

OF THE
FRSA/TRI CONCRETE AND CLAY ROOF TILE INSTALLATION MANUAL
FOURTH EDITION

FRSA 2006 Annual Convention – Seminar #11
Outline

• Changes/Updates to Manual
• Hip and Ridge Attachment Section
 – Support Member Attachment
 – Trim Attachment Options to Support Member
 – Starter Tile Attachment
 – Weather Blocking
 – Deficiencies Noted after Wilma
 – Hip and Ridge Design Pressures and Resistance Values
• Fastening Table Changes
 – Comparison with Third Edition
Changes to Manual

- Corrected text typos
- Corrected drawings and drawing text errors
- Changed wind standard calculations from ASCE 7-98 to ASCE 7-02
- Included hip and ridge design pressures
- Added monoslope roofs wind loading requirements
- Put hip and ridge attachment guidelines in back of Manual for all systems
Industry Proposed Changes

• Systems 1 and 2
 – Structural supports required for hip and ridge attachment; no mortar-only

• System 3
 – Field tile approved mortar formulations only or structural supports for hip and ridge attachment

• System 4
 – Hip and ridge attachment same as System 3
Hip and Ridge System Design Considerations – Transferring the Wind Loads to the Structure

• Mechanically Fastened Systems
 – Wood frame attached with straps or metal brackets or adhesive
 • Hip and ridge tiles installed with
 – nails and code-approved adhesive
 – code-approved adhesive
 – Metal frame – attached with nails or screws
 • Hip and ridge tiles installed with
 – code-approved adhesive

• Adhesive or Mortar-Set Systems
 • Same options as above
 • Mortar
Future Enforcement

- Each municipality will issue their own requirement time period. Generally, permits pulled after December 12, 2005 will require hip and ridge attachment changes.

- Revisions are included in the reprinting of FRSA/TRI Manual – Fourth Edition just released.
Hip and Ridge Attachment

- Mortar-only attachment no longer an option for Systems 1 and 2
- Fastening options for support member follow Table 11 in the Manual
- Follow hip and ridge requirement Tables 2A-2D & 3A-3D for hip and ridge for design pressures
Cut Field Tile Attachment Requirements

- All field tiles (two tiles on each side of hip) and the top course of the ridge must be attached to the substrate. Code approved:
 - Adhesive
 - Mortar
 - Mechanical fasteners and adhesive
- Minimum head lap of trim tiles 2 inches
Flat/Low, Medium or Crossbond Tile Applications

Attach two tile each side of hip and one top ridge course to the underlayment with code approved roof tile adhesive, code approved mortar or mechanically attach with fasteners and code approved adhesive at the tile overlaps. When using adhesive or mortar to attach tile to the underlayment the underlayment must be approved for adhesive-set or mortar-set applications.
Metal Support Fastening
Two #8 Screws
130 MPH Wind Zone
36 Inches O.C.

2” x (H) Wood Support Member
Hip and Ridge Bracket
FRSA/TRI Table 11

Table 11

Category II Buildings

Hip and Ridge Support Member Attachment Recommendations

<table>
<thead>
<tr>
<th>Roof Sheathing (inches)</th>
<th>Exposure</th>
<th>Number of Fasteners on each side of Ridge Board</th>
<th>Strap Width</th>
<th>Basic Wind Speeds, V (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>15/32"</td>
<td>B</td>
<td>1 - #8</td>
<td>3/4"</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 - #8</td>
<td>1-1/2"</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1 - #8</td>
<td>3/4"</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 - #8</td>
<td>1-1/2"</td>
<td>46</td>
</tr>
<tr>
<td>19/32"</td>
<td>B</td>
<td>1 - #8</td>
<td>3/4"</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 - #8</td>
<td>1-1/2"</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1 - #8</td>
<td>3/4"</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 - #8</td>
<td>1-1/2"</td>
<td>46</td>
</tr>
</tbody>
</table>

Note 1: For Building Category Definition See Page 104.

Note 2: For Exposure Categories See Page 105.

Note 3: Table conforms to ASCE 7-02. Essential or Hazardous Facilities having an Importance Factor of 1.15

Note 4: Table is good for Gable and Hip Roofs for Roof Slopes 2:12 < Θ ≤ 12:12. Monoslope roof slopes are not addressed.

Note 5: For mean roof heights over 60 feet, engineering calculations must be submitted for permitting.
Mechanically Attached Wood Hip and Ridge Board Using Metal Brackets.

Install according to Table 21 of the FRSA/Roof Tile Institute Concrete and Clay Roof Tile Installation Manual or the recommendations of HVHZ, or the Florida Building Code.
Install according to Table 21 of the FRSA/Roof Tile Institute Concrete and Clay Roof Tile Installation Manual or the recommendations of HVHZ of the Florida Building Code.

Mechanically Attached Wood Hip and Ridge Board using Strapping Method.
Install according the recommendations of MVHZ of the Florida Building Code and the adhesive manufacturer.

Wood Hip and Ridge Board
Attached with Code-approved adhesive
Install according to Table 21 of the FRSA/Roof Tile Institute Concrete and Clay Roof Tile Installation Manual or the recommendations of HVHZ of the Florida Building Code.
Metal Support Member Height Options

Fig A
- **Center Rib**:
- **Deck Flange**:

Fig B
- **Low Profile 5" Inches**
- **Recommended Tile**:
 - Flat Tile
 - Cedar Lite
 - Rustic Shake
 - Hacienda Tile

Fig C
- **Medium Profile 4" Inches**
- **Recommended Tile**:
 - Capri
 - Vanguard
 - Spanish S
 - Resial
 - Estar
 - Palma
 - Europa Wave
 - Ceb Tile
 - Verona
 - Bold Roll

Fig D
- **High Profile 6" Inches**
- **Recommended Tile**:
 - Altura
 - Espana
 - Santa Fe

Details and Specifications
- **Length**:
 - Approximate 10' (Lft)
- **Center Rib**:
 - Fig A - Approximate 2 3/8" Inches
- **Deck Flange**:
 - Fig A - Approximate 2" Inches
- **Height**:
 - Fig B - Low Profile 3" Inches
 - Fig C - Medium Profile 4" Inches
 - Fig D - Large Profile 5" Inches
- **Gauge**:
 - 28 Gauge Galvanized Galvalume

Installation Tips
- Choose the right profile height depending on the tile height.

For More Installation Detail Please Refer to Your Local County Codes

Notes
- For more information, please contact the East Coast Metals Sales Department at 1-800-579-0544
- Patent: Patent Pending

East Coast Metals

2991 West Lane, Hawaiian Gardens, CA 90716
Tel: 305-885-2881 Fax: 305-885-6908
WWW.EASTCOASTMETALS.COM

Hip & Ridge - Channel Metal Recommended Profile

Not Drawn to Scale 507
Copyright ©
Adhesive Support Member
Height Requirements

• The head of the hip or ridge tile must touch the support member to get the yield and contact area to the underside of the tile.

• If the head of the hip and ridge tile does not touch the support member, more material must be applied to make contact with the underside of the tile.
Head of tile must be in contact with or within a maximum 1/2" of support member

Pre-bagged or job site mixed mortar may be used for weather blocking areas only. When used as a structural attachment only FBC approved pre-bagged mortar is allowed.

Embed hip/ridge tile into mortar or pack with mortar and point to match tile finish.

For slopes greater than 7:12 attach with a nail or screw.

Adhesive used to attach tile and structural support.

Adhesive-set Hip and Ridge Tile using Mortar as a Weather Block.
Insufficient Support Member Height
Weather Blocking Options

- Mortar Point-Up
- Hip and Ridge Sealer – foil faced or wind tested sealer
- Adhesive (open hip and ridge line) (Dry Ridge)
- Mortar (open hip and ridge line) (Dry Ridge)
Foil –Faced Membrane

Foil-faced Self-adhered Membrane Used as a Weather Block
Adhesive Tested as a Weather Block

Adhesive used as weather blocking
Mortar Hip and Ridge Weather Blocking System.
Hip and/or Ridge Starter Tile Attachment

• Starting at the eave, place hip starter tile over wood hip frame, positioning in the center of the structural support. Secure the head of the starter tile to the structural support with a mechanical fastener conforming to the Manual.

• Care must be taken to properly secure the first (starting) hip and ridge tile of the hip/ridge attachment system. Additional securing at the hip starter tile installed at the eave and at the starting ridge tile installed at either the ridge/hip or ridge/gable junctions are necessary to prevent the tile from overturning during a high wind event.
Hip and/or Ridge Starter Tile Attachment

- Structural support kept 6-12 inches from eave
- All hip and ridge starter tiles secured at both ends, either mechanically or with adhesive
Metal Support Member - Typical Eave Detail
Cantilever Options

Metal or wood
Structural support

Metal or wood
Cantilever of
structural support
(wood shown)

.10d nails or screws to penetrate min. 3/4"

2" x (H)"

Cantilever area Min. 2" x 2"

2" x (H)" notched out

Screws

Metal Frame

Hip and Ridge Attachment
Starter Hip/Ridge Tile – Option 1

- Drill a 3/16 inch hole within lower 1/3 of tile length, from the eave end of the hip starter tile. Secure the eave end of the starter tile with a mechanical fastener, embedding into the structural support a minimum of 3/4 inch. Seal the head of the fastener with a UV resistant sealant. Adhesive may also be used in lieu of a fastener at the starting end of the tile as long as the structural member has been cantilevered to provide a base for adhesive attachment.
Starter Hip/Ridge Tile – Option 2

• Prior to installing the hip starter tile, apply a code-approved roof tile adhesive along the entire length of the hip starter tile according to the adhesive manufacturer’s installation instructions. Secure the head of the tile with mechanical fastener, embedding into structural support a minimum of 3/4 inch.
Starter Hip/Ridge Tile – Option 3

• Prior to installing the hip starter tile, place a full bed of only FBC code-approved pre-bagged mortar according to the manufacturer’s installation instructions, under the entire hip starter tile. Within 2 minutes of placing the bed of mortar, embed the entire hip starter into the solid bed of mortar. Secure the head of the tile with mechanical fastener, embedding into structural support a minimum of 3/4 inch. Point mortar to desired finish.

• When using this mortar method for securing the starter hip tile, ensure underlayment is approved for use with mortar-set applications.
Hip and Ridge Attachment

• Mechanical
 – Screw or nail into wood nailer with code approved adhesive at laps as tested

• Adhesive
 – Apply code approved adhesive on top of structural support as tested

• Mortar (System 3 and 4)
 – 10 inch trowel full of tested mortar formulation every 7 inches as tested
 – Embed into pliable mortar paddy approximately 1-1/2 inches
Mechanical Attachment

Attach Hip/Ridge tile using Mortar as Weather Blocking

- Fasten with nail or screw to structural support (wood shown)
- Install code approved adhesive at hip/ridge tile overlaps
- Fasten structural support with adhesive or metal straps according to the FRSA/RTI manual or the HVHZ of the FBC.
- Embed tile into mortar bed both sides of ridge or pack mortar into void after hip and ridge tiles are installed.
- Point mortar to match tile finish.
- Tile overlap.
Screw into Metal
Adhesive Attachment

For slopes greater than 7:12 fasten with nail or screw to structural support.

Structural support according FRSA/RTI manual or the HVHZ of the FBC (metal shown).

Optional: Install code-approved adhesive at hip/ridge tile overlaps.

Install code-approved adhesive on top of structural support according to adhesive manufacturers Product Approval or the HVHZ of the FBC.

Embed tile into mortar bed both sides of hip/ridge or pack mortar into void after hip and ridge tiles are installed and adhesive has cured.

Point mortar to match tile finish.

Tile overlap.

Attaching Hip/Ridge Tile with Adhesive Using Mortar as Weather Blocking.
Two Component - Continuous Bead
Two Component – Individual Paddy
One Component Adhesive

Paddy Placement on Ridge Board and Ridge Overlap
Actual Contact Area to Ridge Tile
Screw and Adhesive

07-01-06 Hip and Ridge Attachment
One vs. Two Component Adhesive (Foam)

- One component depends on compression to establish secure contact. This includes non-expanding products like RT-600R and one component roof tile adhesives like Tile BondR and POLYSET OneR.

- Two component will expand to establish contact area, given enough volume is applied.
Mortar Set Attachment
Systems 3 & 4 Only

Apply a minimum 10" trowel full of mortar parallel to hip or ridge

Continue in same manner lapping previously applied mortar paddy 3"

Mortar-set Hip and Ridge Attachment

Use only FBC approved pre-bagged mortar that has been tested according to ICC - SSTD-11 and has data substantiating compliance.

Embed hip/ridge minimum 1 1/2" into 3" bed of mortar prior to pointing up mortar for a finished appearance. Do not pack mortar into cavity.

Hip and Ridge Embedment into Mortar
Stack an additional trowel(s) full of mortar in the pan portion of the tile, as needed, to get the proper height of mortar to properly embed the hip/ridge tile 1 1/2" into the mortar bed.
Hip and Ridge Design Pressures

- All hip and ridge fastening options covered in the Manual have been tested and certified by a third party laboratory.

- To determine actual design pressures of hip and ridge tiles, use underlayment pressures in Tables 2A-2D and 3A-3D of the Manual.
Table 2A

Category II Buildings

Underlayment Table for Systems 3 & 4 Only and Hip and Ridge Design Pressures

<table>
<thead>
<tr>
<th>Height (ft) above ground level, z</th>
<th>Basic Wind Speed, V_c (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0 - 30</td>
<td>32.1</td>
</tr>
<tr>
<td>40</td>
<td>34.9</td>
</tr>
<tr>
<td>50</td>
<td>37.2</td>
</tr>
<tr>
<td>60</td>
<td>39.1</td>
</tr>
<tr>
<td>100</td>
<td>39.6</td>
</tr>
<tr>
<td>105</td>
<td>43.7</td>
</tr>
<tr>
<td>110</td>
<td>48.0</td>
</tr>
<tr>
<td>120</td>
<td>57.1</td>
</tr>
<tr>
<td>125</td>
<td>61.9</td>
</tr>
<tr>
<td>130</td>
<td>67.0</td>
</tr>
<tr>
<td>140</td>
<td>77.7</td>
</tr>
<tr>
<td>145</td>
<td>83.3</td>
</tr>
<tr>
<td>150</td>
<td>89.2</td>
</tr>
<tr>
<td>Standard or Special Occupancy Structures having an Importance Factor of 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Essential or Hazardous Facilities having an Importance Factor of 1.15</td>
</tr>
<tr>
<td>0 - 30</td>
<td>36.9</td>
</tr>
<tr>
<td>40</td>
<td>40.1</td>
</tr>
<tr>
<td>50</td>
<td>42.7</td>
</tr>
<tr>
<td>60</td>
<td>45.0</td>
</tr>
</tbody>
</table>

Note 1: For Building Category Definition See Page 104.
Note 2: For Exposure Categories See Page 105.
Note 3: Table conforms to ASCE 7-02.
Note 4: For mean roof heights over 60 feet, engineering calculations must be submitted for permitting.
Note 5: The above design pressure are conservative for any hip/ridge tile with an average exposed width less than 12". To determine the actual hip/ridge design pressure multiply the average exposed width of the tile (b) divided by 12 (inches) times the required design pressure (p).
Example Calculation

• If the average width of the hip/ridge tile is 10” and the exposed length is 16.5”.
 – Hip/ridge area is \(A = \frac{W \times L}{144} \)
 – \(A = \frac{10” \times 16.5”}{144} \)
 – \(A = 165/144 \)
 – \(A = 1.146 \text{ sq. ft} \)

• The design pressure according to Table 2A @ 140 mph & 0-30 feet mean roof height is 77.7psf

• \(77.7 \times 1.146 = 89.0 \text{ psf} \)
4.4 Minimum underlayment shall comply with FRSA/RTI 07320.
4.5 Tile systems using Polypro® AH160 are limited to installation on projects having an Aerodynamic Uplift Moment (M_u) or Moment Resistance (M_r) not greater than the following Allowable Overturning Moment values. Refer to Appendix 1 for Adhesive Paddy Placement details.

Table 1: Maximum Aerodynamic Uplift Moment (M_u) or Moment Resistance (M_r) Field Tile Installations

<table>
<thead>
<tr>
<th>Tile Profile</th>
<th>Adhesive Paddy Placement</th>
<th>Allowable Overturning Moment (T·ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay or Concrete, Flat/Low</td>
<td>Small</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Two</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Dual Stacked</td>
<td>59</td>
</tr>
<tr>
<td>Clay or Concrete, Medium</td>
<td>Small</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Two</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Dual Stacked</td>
<td>43</td>
</tr>
<tr>
<td>Clay or Concrete, High</td>
<td>Small</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Two</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Dual Stacked</td>
<td>39</td>
</tr>
<tr>
<td>Clay, Barrel</td>
<td>Large</td>
<td>182</td>
</tr>
<tr>
<td>Concrete, Barrel</td>
<td>Large</td>
<td>127</td>
</tr>
</tbody>
</table>

Table 2: Maximum Aerodynamic Uplift Moment (M_u) or Moment Resistance (M_r) Hip & Ridge Installations

<table>
<thead>
<tr>
<th>Tile Profile</th>
<th>Attachment</th>
<th>Hip / Ridge Material</th>
<th>Allowable Overturning Moment (T·ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay or Concrete, Hip & Ridge</td>
<td>Continuous Paddy, AH160 only</td>
<td>Metal frame w/ 4" flange</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>8" x 2" Slotted Paddy, AH160 only</td>
<td>Metal frame w/ 2" flange (East Coast Metals)</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Continuous Paddy, AH160 only</td>
<td>2x6 PT ridge board</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>(1) #10 x 2½" SS screw at head with AH160 at head</td>
<td>2x6 PT ridge board</td>
<td>128</td>
</tr>
</tbody>
</table>

1 Determined in accordance with 2001 FBC Section 1606.3.3 or 2004 FBC Section 1609.7.3.
2 Determined in accordance with RAS 127.
Hip and Ridge Resistance Values

Table 2: Maximum Aerodynamic Uplift Moment (M_u) or Moment Resistance (M_r) Hip & Ridge Installations

<table>
<thead>
<tr>
<th>Tile Profile</th>
<th>Attachment</th>
<th>Hip / Ridge Material</th>
<th>Allowable Overturning Moment (ft-lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay or Concrete, Hip & Ridge</td>
<td>Continuous Paddy, AH160 only</td>
<td>Metal frame w/ 4" flange</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>8" x 2" Shared Paddy, AH160 only</td>
<td>Metal frame w/ 2" flange (East Coast Metals)</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Continuous Paddy, AH160 only</td>
<td>2x6 PT ridge board</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>One (1) #10 x 2½" SS screw at head with AH160 at tail</td>
<td>2x6 PT ridge board</td>
<td>128</td>
</tr>
</tbody>
</table>
Fastening Charts Overview
Fastening Table Comparisons
1998 vs 2002

• Anchor sheet tables allowable uplift resistance:
 – 1998: 3 tables: One ply, one ply with battens, two ply
 – 2002: Two ply only, with note should single ply values be required

• Anchor sheet tables required uplift resistance:
 – 1998: Gable and hip roofs treated equally
 – 2002: Gable and hip roofs separated
Fastening Table Comparisons
1998 vs 2002

• Hip and ridge resistance values:
 – 1998: Prescriptive - separated by method
 – 2002: Calculated based on design pressure and tested uplift values

• Monoslope attachment requirement:
 – 1998: Not stipulated (monoslope roofs have higher design pressures)
 – 2002: New monoslope table $\leq 6\frac{3}{4}:12$ (>6-3/4:12 not included in ASCE 7-02)
Fastening Table Comparisons
1998 vs 2002

• Tile fastening tables:
 – 2002: Follows same format as anchor sheet tables with regard to gable and hip requirements
 – 1998: Referenced perimeter and field roof zones
 – 2002: Referenced corner, perimeter, and field roof zones (the corner zones having higher design pressures effectively raises fastening criteria when using “worst case values” for the entire roof)
Fastening Table Comparisons
1998 vs 2002

• 2002:
 – Eliminated quick reference charts
 – Added essential facilities requirements
 – Hip and ridge tested values required by manufacturer
 – Hip and ridge support member attachment uses the more conservative requirements for essential facilities
One Screw Limitations

Western Coast of Florida Where I-75 Determines Boundary

- **130 mph – INLAND – Direct Deck**
 - Flat: 60 ft mean roof height
 - Medium: 60 ft mean roof height
 - High: 40 ft mean roof height

- **130 mph – COASTAL – Direct Deck**
 - Flat: 40 ft mean roof height
 - Medium: 15 ft mean roof height
 - High: N/A

- Note: Coastal values are marginal for single screw. Suggest two screws in such cases.