

APSP/ANSI-7 Writing Committee

Dan Johnson, CBP
Swim, Incorporated
Lead Dog Aquatic Consulting

APSP/ANSI/ICC-15 Writing Committee
APSP/ANSI/ICC-5 Writing Committee (Chairman)
International Swimming Pool \& Spa Code Writing Committee APSP Technical Committee

Why do We Have These Standards?

ANSI/APSP/ICC-15 @
 Energy
 ANSI/APSP-7 @ Safety

Because We Need Them

Before we had the
ANSI-7 Standard and the ANSI-15 Standard

"garden variety" circulation systems:

- offered little protection against entrapment
- typically wasted vast amounts of energy

How did we Get Here?

- State law requirement to provide pool and spa energy efficiency
- Florida Building Commission implemented the state law with the 2010 Code \& remains with slight changes in the $5^{\text {th }}$ edition Code
- FEEC, Chapter 4, Section R403.9 - Residential, along with ANSI/APSP-14 and ANSI/APSP-15
- FEEC, Chapter 5, Section C404.7-Commercial
- Went into effect in March 15th (2012)

ANSI/APSP-7 has been in effect since 2007

Learning Objectives

- Understanding the difference in flow requirements of the ANSI-I5 Energy Standard and the ANSI-7 Suction Entrapment Avoidance Standard.
- Calculating volume and required/desired flow rate(s).
- Sizing the piping system and selecting a pump compliant with ANSI-I5.
- Calculating Total Dynamic Head.
- Sizing the piping system, selecting and installing the right cover per ANSI-7.
- Verifying Total Dynamic Head for Safety.

Three Step Design Process

${ }^{\text {St }}$ APSP-5 Residential Pools
$2^{\text {nd }}$ APSP-15 Energy Efficiency
$3^{\text {rd }}$ APSP-7 Suction Safety

Step 1 ANSI-5

$1^{\text {St }}$ APSP-5 Residential Pools

$2^{\text {nd }}$ APSP-15 Energy Efficiency

3rd APSP-7 Suction Safety

Step 2 ANSI-15

Minimum 6 hour filtration cycle,

longer cycles are encouraged

Additional Requirements ANSI-15

- Specify controller for multi-speed pumps must default to low speed within 24 hours.
- Show efficiency rating for heaters
- Minimum 4 pipe diameters in front of pump
- Minimum 18 " pipe after filter for future solar
- Directional return fittings must be used

ANSI-15 Design Requirements

Maximum flow rates per Filter Type:

Cartridge ft .

Sand
Diatomaceous Earth
.375 gpm per sq.

15 gpm per sq. ft.
2 gpm per sq. ft.

$1^{\text {St }}$ APSP-5 Residential Pools

$2^{\text {nd }}$ APSP-15 Energy Efficiency
$3^{\text {rd }}$ APSP-7 Suction Safety

Step 3 ANSI-7

$1^{\text {St }}$ APSP-5 Residential Pools

$2^{\text {nd }}$ APSP-15 Energy Efficiency

3rd APSP-7 Suction Safety

Lets Start the ANSI-15 Process "Design Standard"

-Determine volume
-Calculate filtration flow rate
-Select a pump from the database
-Determine auxiliary flow rate

- Size the piping system and filter

Calculating volume

1 Cubic Foot $=7.48$ Gallons of Water

Calculating volume

LX W X D = Cubic Feet
$27 \times 7.48=201.96$ Gallons

ANSI-15

Calculating pool volume

Start with Surface Area

32 ft .

$16 \mathrm{ft} . \times 32 \mathrm{ft} .=512 \mathrm{sq}$. ft .

Surface area

32 ft . length

12 ft . end $=6 \times 6 \times 3.14=113 \mathrm{sq} \mathrm{ft} . \div 2=56.5$
14 ft . end $=7 \times 7 \times 3.14$ sq. $\mathrm{ft} 4 \mathrm{sq} \mathrm{ft} . \div 2=77$ sq. ft .

$$
32-13(6+7)=19 \times 13(\text { avg } . \text { width })=247
$$

$56.5+77+247=380.5$ sq. ft. (381)

Count the squares

1 square $=1 \mathrm{sq} . \mathrm{ft}$.

Then Average Depth

Then Volume \& Turnover ANSI-15

4.5 ft . Avg. Depth
$381 \times 4.5=1,714$ cubic feet $1,714 \mathrm{cu} . \mathrm{ft} . \times 7.48=12,820$ gallons

$$
12,820 \div 360=35.6(36 \mathrm{gpm})
$$

Consider this Example

- Most in the industry size for a single turnover in 8 hours - even though 12 hours (the ANSI-5 minimum) would be more efficient.
- $15,000 \div 12 \div 60=21 \mathrm{gpm}$. - at 8 hours only 31 gpm is needed.
- For a 15,000 gallon pool, common practice was to install at least a one h.p. pump and run it 8 hours.

Popular 1 h.p. pump draws 7.8 amps
230volts $\times 7.8 \mathrm{amps}=1794$ watts $=1.8 \mathrm{kwh}$
1.8×8 hours $\times 365$ days $=5,256 \mathrm{kwh}$
@ .13 ¢ per kwh $=\$ 683.28$ per year
Popular 1 h.p. 2-speed pump draws 2.3 amps (low speed) 230 volts $\times 2.3 \mathrm{amps}=529$ watts $=.529 \mathrm{kwh}$ $.529 \times 12$ hours hours $\times 365$ days $=2,317 \mathrm{kwh}$
@ $.13 ¢$ per kwh $=\$ 301.21$ per year
Installing the 1 h.p. single speed was a complete waste of nearly \$ 32.00 a month

Here's Why

Residential End-Use Consumption of Electricity 2001
U.S. Energy Information Administration

Step 1: Design

Sample pool w/piping illustrated

Sizing for ANSI-15 Compliance

First, select the pump

Sample pool filtration flow rate: 32 gpm
For multi-speed and variable-speed filter pumps, at least one speed shall have the flow listed for Curve (A or C) that is equal to or less than the maximum filtration flow rate.

For filtration flow rates up to 17,000 gals. Select pump from Curve A
For filtration flow rates greater than 17,000 gals. Select pump from Curve C

Appliance Database

Pump Performance Curve

$11 / 2$ h.p. 2-speed pump

Selecting the pump - recap

Pool gallons

(to determine Curve A or C)

Calculate filtration flow rate (pool gallons $\div 360$ minutes)

Select pump from database with Curve A or C listed flow rate equal to or less than calculated filtration flow rate

Residential pool pumps and motors:

- Applies only to Residential Pool Filtration Pumps.
- Florida code does not regulate pumps used for other features; booster pumps for cleaners, waterfall pumps, etc. Only pumps that operate the main filtration system are regulated.
- Spa jet pumps are excluded per ANSI-15
- Excludes auxiliary filters not used to maintain water quality, example: fountains, waterfalls...

Residential pool pumps and motors:

- Prohibits split-phase, shaded-pole or capacitor start-induction run type pump motors.
- Requires pool pumps and pump motors with a total horsepower of 1 h.p. or greater to have the capability of operating at two or more speeds.
- Pool pump motor controls for use with a twospeed or greater pump shall have the capability of operating the pool pump at a minimum of two speeds.

Filter Sizing

- Filter shall be sized for 6 hour turnover (pool gallons $\div 360$) - sample pool $=32 \mathrm{gpm}$, or maximum flow rate, whichever is greater.
- Sample pool - the spa therapy jet flow rate is 60 gpm (4 jets @ 15 gpm each). This is the maximum flow rate.
- Sample pool filter shall be sized, using the "filter factor" for 60 gpm - the maximum flow rate.

Filter Factors ANSI-15

Cartridge $\quad .375 \mathrm{gpm}$ per sq. ft. Sand
Diatomaceous Earth 2 gpm per sq. ft.
Cartridge Filter: (filtration area)
150 sq. ft. x $.375=56.25$ gpm - Too small
200 sq. ft. x $.375=75$ gpm - Compliant @ 60
gpm
Diatomaceous Earth Filter: (filtration area)
27 sq. ft. x $2=54 \mathrm{gpm}-$ Too small
36 sq. ft. x $2=72$ gpm - Compliant @ 60 gpm

Filtration Pipe Sizing

6 fps - suction side 8 fps - return side

Sizing is based on Velocity

Velocity is a measurement of how fast a liquid moves through pipe. Velocity is expressed in Feet Per Second (FPS)

Velocity changes as pipe size changes

Filtration Pipe Sizing

Pool piping \& fittings shall be sized per table Suction side maximum 6 fps (all suction piping)
Return side maximum 8 fps

Pipe Size	$1.5^{\prime \prime}$	$2^{\prime \prime}$	$2.5^{\prime \prime}$	3 "	$3.5^{\prime \prime}$	$4^{\prime \prime}$	$5^{\prime \prime}$	$6^{\prime \prime}$
Nominal GPM @ 6fps	38	63	90	138	185	238	374	540
Nominal GPM @ 8fps	51	84	119	184	247	317	499	720

Pipe and fittings do not include equipment connections or internal equipment piping of, but not limited to, suction safety systems, pumps, heaters, and sanitizing devices

Final steps for compliance

- Multi-speed pumps shall have a controller that defaults to filtration flow rate when no auxiliary load is operating and/or within 24 hours.
- Filtration pump shall have a straight length of pipe at least 4 pipe diameters in front of the intake.
- 18 inches of straight pipe between the filter and heater or connections installed for future solar.
- The pool shall have directional inlets that adequately mix the pool water.

Design Process

${ }^{1 \text { St }}$ APSP-5 Residential Pools
$2^{\text {nd }}$ APSP-15 Energy Efficiency
$3^{\text {rd }}$ APSP-7 Suction Safety

ANSI-7 - The Hazards

Hair Entrapment
Body Suction Entrapment
Evisceration (Disembowelment)
Mechanical Entrapment

ANSI-7 - Root Causes

FLOW - Hair Entrapment
Suction - Body Entrapment \& Evisceration

Mechanical - Limb Entrapment (jewelry, etc.)

Evisceration - Get drains out of wading pools!

General Requirements

There is no backup for a missing or damaged suction outlet cover/grate. If any cover/grate is found to be damaged or missing, the pool or spa shall be immediately closed to bathers.

Requirements
 ANSI-7

Listed suction outlet(s). Suction outlet covers/grates shall be tested and certified by a nationally recognized testing laboratory as conforming to the most recent edition of APSP/ANSI-16

A suction fitting is defined in this standard as the cover, attachments and sump (Suction Outlet Fitting Assembly - SOFA)

Field Built Sumps

Requirements of the Standard

- Listed Safety Covers - what's required \& how to comply
- Water Velocity - what' s required \& how to comply
- Placement of Submerged Suction Outlets (Drains) - what's required \& how to comply

Certified Covers?

- ASME A112.19.8 - 1987
- No test for Finger, Body, or Cover Pull-off
- UV inhibitors, no UV testing
- Lock of hair
- ASME A112.19.8-2007 (ANSI/APSP-16)

Finger \& Limb Entrapment Test

- Body Entrapment Test
- Shear Load \& Pull Load Tests
- UV Weathering before structural test
- Fastener Test
- Full Head of Hair Test
- Pony Tail Test
- No Size Limit

ANSI-7 Requirements

Water velocity in field fabricated piping is based on the maximum system flow rate

Water velocity in branch suction piping is based on maximum system flow rate and shall be limited to 6 feet per second when one of a pair of drains is blocked. In normal operation then, the branch suction piping velocity is 3 feet per second. 8 fps in header piping to the pump.

Lets Start the Process

- Determine Maximum flow rate
- Calculate resistance (TDH)
- Size the piping system \& select a compliant cover

Pump Efficiency Curve

Outside the Curve - Not good for the Pump

The Calculations for

Maximum pump flow: From the manufacturer's pump curve. (Large piping system \& flow typically outside pump's efficiency curve)

Total dynamic head (TDH): Sum of all resistances in a complete operating system (pipe, fittings, valves, filter, heater, etc.).
(Estimate maximum flow - then perform TDH calculations at estimated
flow, this may lead to a smaller piping system than if you use Maximum pump flow - and pump performance closer to it's efficiency curve)

Simplified TDH calculation: Hydraulic calculations using the shortest distance between the pool and the pump, omitting the calculations for fittings/valves, and using the best performance ratings for filters and heaters. (likely won't help)

Pump Performance Curve

Spa design flow rate at 60 gpm

Here' s how TDH is Calculated

90 ft
Measure the pipe, count the fittings, valves, equipment, return \& drain fittings

FRICTION LOSS - WATER

Flow Velocity \& Friction Loss - Schedule 40 Pipe

Friction loss through fittings

Equivalent length of straight pipe in feet

Pipe Size	1"	1.5"	(2")	(2.5)	3"	4"	5"	6"	8"
90° elbow	2.5	4.0	(5.7)	(6.9)	7.9	11.4	14.5	16.7	21.0
45° elbow	1.4	2.1	2.6	3.1	4.0	5.1	7.0	8.0	10.6
Tee through	1.7	2.7	(4.0)	(4.9)	6.1	7.9	9.7	12.3	14.0
Tee branch	6.0	8.4	12.0	(14.7)	16.4	22.0	26.2	32.7	49.0
Swing Check Valve	11.2	15.2	19.1	22.0	27.0	38.0			

The Complete Piping System

You don't have to draw the
actual pipe \& fittings, of measuring and math.

Measure the distances, add for vertical pipes - to \& from submerged outlets, returns, etc.

Count the fittings; elbows, tees, etc.

Suction Side - the Pool

POOL:

Total Dynamic Head - Pool Suction Side $=$
13 ft . TDH

Suction Side - the Spa

SPA:

2" pipe
2" 90's
2 "Tee's 1 ea. @ 4 ft .
Total equivalent feet of 2 in . pipe Head
$\begin{array}{llrr}3 \text { way valve } & 1 \mathrm{ea} . @ 2 \mathrm{ft} . & \text { Round to } & \text { 6ft }^{2} \mathrm{ft} \text { head } \\ \text { SOFAd } \\ \text { SOFA } & 1 \text { ea. @ } 1 \mathrm{ft} . & & 1 \mathrm{ft} . \text { head }\end{array}$
Total Dynamic Head - Spa Suction Side = 9 ft. TDH
ANSI-7

Return Side Calculations

POOL, SPA, FOUNTAIN

2" pipe	pool, spa, fountain
2" 90's	23 ea. @ 5.7 ft ea.
2" Tee	6 ea. @ 4 ft.

Total equivalent feet of 2 in. pipe $=$
$4.01 \times 5.84 \mathrm{ft}$. of head per 100
3 way valve $\quad 2$ ea. @ 2 ft.

2" check valve 1 ea @ 2 ft .
Chlorinator
1 in. pool inlet fittings
$1 / 4 \mathrm{in}$. spa jet fittings
Total Dynamic Head - Return Side =
36ft. TDH

Equipment Loss

Pool/Spa Equipment

Total feet - 2 in. pipe
2 in .90 degree elbows $10 @ 5.7 \mathrm{ft}$. ea. $=57 \mathrm{ft}$.
Total equivalent feet of 2 in. pipe $=$ $.67 \times 5.84=$ Filter =

Total TDH loss at Equipment =

10 ft .

67
3.9 ft . head
3.7 ft . head
7.6 ft . head

Round to 8 ft . head

TDH Calculations

SPA Side TDH
Total Dynamic Head - Spa Suction Side $=9 \mathrm{ft}$. TDH
Total Dynamic Head - Return Side $=\quad 36 \mathrm{ft}$. TDH
Total Dynamic Head - Equipment $=$
8 ft . TDH

Spa System TDH = 53 ft . Head

POOL Side TDH
Total Dynamic Head - Pool Scution Side $=13 \mathrm{ft}$. TDH
Total Dynamic Head - Return Side =
36 ft . TDH
Total Dynamic Head - Equipment $=$
8 ft . TDH

Spa System TDH = 57 ft . Head

Pump Performance Curve

Pipe Size	$1.5^{\prime \prime}$	$2^{\prime \prime}$	$2.5^{\prime \prime}$	$3^{\prime \prime}$	$3.5^{\prime \prime}$	$4^{\prime \prime}$	$5^{\prime \prime}$	$6^{\prime \prime}$
Nominal GPM @ 6fps	38	63	90	138	185	238	374	540
Nominal GPM @ 8fps	51	84	119	184	247	317	499	720

Simplified TDH

296 ft . of pipe to $\&$ from the pool, spa, etc.
$2.96 \times 5.84=17.3 \mathrm{ft}$. head
Filter loss = 3.7 ft . head
Total $=21 \mathrm{ft}$. head

Simplified TDH

Pipe Size	$1.5^{\prime \prime}$	$2^{\prime \prime}$	$2.5^{\prime \prime}$	$3^{\prime \prime}$	$3.5^{\prime \prime}$	$4^{\prime \prime}$	$5^{\prime \prime}$	$6^{\prime \prime}$
Nominal GPM @ 6fps	38	63	90	138	185	238	374	540
Nominal GPM @ 8fps	51	84	119	184	247	317	499	720

You can Calculate Big Pools also

2,355 sq.ft. - Split level - Perimeter flow

Pool Piping Schematic

 $1 / 8 \mathrm{in}$. $=1 \mathrm{ft}$.2 inch
feed from circulation pump(s) to upper basin

$$
21 / 2 \text { inch }
$$ feed to upper basin from edge pump

$21 / 2$ inch $\quad 21 / 2$ inch feed from feed from circulation pump(s) to floor pump(s) to low wa pump(s) to floor return manifold
return manifold return manifold

Pool circulation at approx. 250 gm
Edge pumo at aaprox. 132 gpm
Total maximum flow with circulation pump and edge pump running full flow approx. $=382 \mathrm{gpm}$

VOLUME / FLOW CALCULATIONS

Upper level = approx. 6,800 gal
Lower level = approx. $45,100 \mathrm{gal}$.
Total volume in gallons = approx. 51,900
System flow to achieve 6 hour turnover cycle @ 145 g.p.m. Actual system flow @ approx. 250 gpm through perimeter system
NOTE: All return lines to be looped up above respective water levels with vacuum breakers to prevent back-siphon effect when pump is off. (Loops are behind wall next to light transformers)

PIPING LEGEND

$21 / 2$ inch return lines from circulation oump(s) to feed returns in lower basin
\qquad $21 / 2$ inch return line from edge pump to feed vanishing edge spillway

- 2 inch return manifolds to return fittings in upper and lower basins
--2 --- 2 inch return line from circulation pump(s) to feed upper basin
.-- (1)--- 2 inch return line from vacuum pump
\qquad 6 inch gutter drain line to collector tank
(7) $21 / 2$ inch feeds from gutter into 6 inch trunk line
--- V---- 2 inch vacuum line piped to dedicated vacuum pump
(A) 2 inch vented suction from dual drains in upper basin

RESIDENCE WALLS
\qquad gutter trunk line to collector tank

2 inch vacuum line piped
$1 / 2$ inch vent lin from dual drains terminating in wall vent fitting above water level

Equipment Layout

Equipment room layout is a piping guideline - precise placement of equipment may be adjusted to accommodate field conditions

NOTE: All equipment room piping is $21 / 2 \mathrm{in}$. sch. 40 PVC (except vacuum/upper pool low flow pump may be 2 inch).

Size the Pipe for ANSI-7

Pool drain branch suction piping:
TDH = 62 gpm = 2" @ 6 fps

Pool drain header piping from branch to pump:
TDH = $62 \mathrm{gpm}=2 "$ @ 8 fps
Spa drain header piping from drain to pump (Spa has a channel drain - there is no "branch" piping): TDH = $64 \mathrm{gpm}=2 "$ @ 8 fps

Total Dynamic Head

Calculated TDH is the most accurate, least costly method to achieve compliance with ANSI-7
For our sample pool, max. flow or simplified TDH would require 3 inch PVC for all suction piping and $21 / 2$ inch for all return side piping.

More costly to build. Resulting in flow outside the pump's efficiency curve, shortening pump life dramatically and creating a very noisy system.

How do we Pipe our Sample Pool? ANSI-15

Filtration flow rate at 32 gpm
Spa design flow rate at 60 gpm
2 inch piping will be compliant
ANSI-7 (using TDH)

Potential pool drain flow rate at 62 gpm requires 2 " Spa drain header flow rate at 64 gpm requires 2"

If the spa had one more therapy jet (now needing 75 gpm) the suction piping would have to be $21 / 2$ inch. ANSI-7 flow restrictions trump ANSI-15 restrictions. Safety over Energy Efficiency

Design Process

${ }^{1 \text { St }}$ APSP-5 Residential Pools
$2^{\text {nd }}$ APSP-15 Energy Efficiency

\checkmark

$3^{\text {rd }}$ APSP-7 Suction Safety

Demonstrate Compliance

Verify System Flow

PROGRESS

Questions?

