FINAL Report:

Hurricane Michael Data Enhancement (Phase II), Performance of Modular Houses and FEMA Recovery Advisory Reviews

Project #: P0157245

Submitted to:

Building A Safer Florida Inc. on behalf of Florida Department of Business and Professional Regulation Mo Madani, Program Manager Building Codes and Standards 2601 N Blair Stone Rd Tallahassee, Florida 32399

Prepared by:

David O. Prevatt, Ph.D., PE (MA) Principal Investigator Associate Professor (Structures)

David B. Roueche, Ph.D. Co-Principal Investigator Assistant Professor (Structures) Auburn University Report No. 06-20 15 June 2020

Engineering School of Sustainable Infrastructure and Environment Department of Civil and Coastal Engineering University of Florida 365 Weil Hall P.O. Box 116580 Gainesville, FL 32611-6580

DISCLAIMER

The material presented in this research report has been prepared in accordance with recognized engineering principles. This report should not be used without first securing competent advice with respect to its suitability for any given application. The publication of the material contained herein does not represent or warrant on the part of the University of Florida or any other person named herein, that this information is suitable for any general or particular use or promises freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability for such use.

Table of Contents

1	Rele	vant	Sections of The Florida Building Code	1					
	1.1 Relevant Statutes, Standards, Definitions or Other Regulations:								
2	Back	grou	nd	3					
3	Rese	earch	Aims and Motivation	4					
	3.1	Meth	nods	5					
	3.2	Resi	ults	8					
4	Task	: 2: H	urricane Michael Data Enhancement	11					
	4.1	Meth	nods	11					
	4.1	.1	Data Quality	12					
	4.1	.2	Damage Measures	13					
	4.1	.3	Wind Hazard Parameters	16					
	4.1	.4	Building Types	20					
	4.2	Find	ings Related to Wind Hazards	21					
	4.2	.1	Wind Performance Relative to the Florida Building Code	21					
	4.2	.2	Wind Performance of Roof Cover and Wall Cladding Materials	29					
	4.2	.3	Wind Performance of Large Doors	31					
	4.3	Find	ings Related to Surge Hazards	32					
5	Task	3: R	esearch Outcomes from FEMA's MAT Reports	34					
	5.1	Reco	overy Advisory 1	35					
	5.2	Reco	overy Advisory 2	36					
	5.3	FEM	IA P-2077 Recommendations	42					
6	Refe	rence	es	46					
Ap	opendi	x A: N	Iodular Home Database	47					
Ap	opendi	x B: S	Summary of Fields in the Enhanced Hurricane Michael Dataset	60					
Ap	opendi	x C: C	Complete List of Recovery Advisory 2 Recommendations	72					
Ap	opendi	x D: F	lurricane Michael in the Area of Mexico Beach, FL (Kennedy et al. 2020)	77					

1 RELEVANT SECTIONS OF THE FLORIDA BUILDING CODE

- 2017 Florida Building Code- Residential, Sixth Edition Chapter 6- Wall Construction (FBC, 2017)
- 2017 Florida Building Code- Residential, Sixth Edition Chapter 7- Wall Covering
- 2017 Florida Building Code- Residential, Sixth Edition Chapter 8- Roof Ceiling Construction all Covering (FBC, 2017)
- 2017 Florida Building Code- Residential, Sixth Edition Chapter 9- Roof Assemblies (FBC, 2017)
- 2017 Florida Building Code- Building, Sixth Edition, Chapter 14 "Exterior wall" (FBC, 2017)
- 2017 Florida Building Code- Building, Sixth Edition, Chapter 17 "Special installations and test"

1.1 Relevant Statutes, Standards, Definitions or Other Regulations:

• Florida Statute 553.36(13) defines a Modular Building as follows:

"Manufactured building", "modular building," or "factory-built building" means a closed structure, building assembly, or system of subassemblies, which may include structural, electrical, plumbing, heating, ventilating, or other service systems manufactured in manufacturing facilities for installation or erection as a finished building or as part of a finished building, which shall include, but not be limited to, residential, commercial, institutional, storage, and industrial structures. The term includes buildings not intended for human habitation such as lawn storage buildings and storage sheds manufactured and assembled offsite by a manufacturer certified in conformance with this part. This part does not apply to mobile homes.

• Florida Statute 553.80(d) states the following:

Building plans approved under s. 553.77(3) and state-approved manufactured buildings, including buildings manufactured and assembled offsite and not intended for habitation, such as lawn storage buildings and storage sheds, are exempt from local code enforcing agency plan reviews except for provisions of the code relating to erection, assembly, or construction at the site. Erection, assembly, and construction at the site are subject to local permitting and inspections.

• Florida Statute 553.37(3)-(5) states the following:

(3) After the effective date of the Florida Building Code, no manufactured building, except as provided in subsection (12), may be installed in this state unless it is approved and bears the insignia of approval of the department and a manufacturer's data plate. Approvals issued by the department under the provisions of the prior part shall be deemed to comply with the requirements of this part.

- (4) All manufactured buildings issued and bearing insignia of approval pursuant to subsection (3) shall be deemed to comply with the Florida Building Code and are exempt from local amendments enacted by any local government.
- (5) No manufactured building bearing department insignia of approval pursuant to subsection (3) shall be in any way modified prior to installation, except in conformance with the Florida Building Code.

2 BACKGROUND

Hurricane Michael (October 10, 2018) made landfall south of Panama City, FL with the National Hurricane Center reporting a minimum central pressure of 919 MB and maximum sustained winds of 150 mph. Peak wind gusts were measured near the eyewall at 130 mph (10 m height, open exposure, 3 second gust), but gusts may have been higher as several observation stations were damaged and stopped reporting. Post-storm analysis estimated that the design wind speeds for many structures were exceeded for a sizable region near Mexico Beach and further inland (Vickery et al. 2018). The hurricane particularly affected Mexico Beach and Panama City and nearby coastal towns as well as interior areas, such as Blountstown, FL, and Marianna, FL located north of the I-10 Interstate highway.

The research team, in collaboration with the NSF Structural Extreme Events Reconnaissance (StEER) network, conducted two damage surveys following the landfall of the hurricane and investigated the structural performance of buildings affected. Assessments were primarily conducted between October 13-15, 2018 and November 1-6, 2018. The research team collected data in Florida from Panama City Beach east and south to Indian Pass, FL and north to Marianna, FL. The communities assessed included: Panama City Beach, Panama City (and surrounding communities), Mexico Beach, Port St. Joe, Apalachicola, a few routes out to barrier islands in the region, and the inland communities of Blountstown and Marianna. Focus was primarily directed toward broadly assessing building performance over a large expanse of the impacted area and over a range of structural typologies, with particular emphasis on documenting both new and old construction, preferably in close proximity.

The research team was able to compare the performance of the houses in neighborhoods affected by Hurricane Michael using the year of construction to differentiate between those built before and after the Florida Building Code was first adopted in 2002. The research team also presented building performance based on wind and storm surge hazard in the Survey and Investigation of Buildings Damaged by Hurricane Michael Project Phase I (2019). The Second Phase of this project continued the data enhancement of the remaining areas and compared the performance of the Pre- and Post FBC buildings.

3 RESEARCH AIMS AND MOTIVATION

A result of the insurance crisis following the 2004 and 2005 hurricanes was that the legislature saw the impact Florida Building Codes can have on building damage and insurance losses. Subsequently, the state building code was revised further from the 2002 adoption to enhance the wind resistance measures of the code. The code now prioritizes property protection from hurricane winds and water intrusion and mitigation of existing buildings. The Florida Building Commission continues to focus on developing the fundamental science essential to good engineering standards and buildings codes, which serves as the motivation for this project.

Hurricane Michael provided a unique opportunity to understand the performance of nominally code-compliant buildings under near-design or even above-design hazard conditions. Since there are many different factors affecting the performance of an individual building, it is necessary to analyze large, high quality datasets containing as few errors as possible and with as little uncertainty as possible. The damage assessments conducted by the research team following Hurricane Michael consisted of a large collection of geolocated images and partially filled out survey forms for each structure assessed. Additional efforts following the field deployments were needed to enhance and perform quality control checks on the data to produce a robust, reliable final dataset. In Phase I of this project (Prevatt & Roueche, 2019), the research team was able to perform data enhancement of approximately 220 buildings. The goal of this Phase II project is to perform the DEQC process on the remaining buildings (about 500), and perform an exploratory analysis of the dataset to evaluate the relative performance of code-compliant construction.

A tangential motivation of this research is to assess the performance of modular homes, which are subject to the requirements of the Florida Building Code but are manufactured offsite. The null hypothesis is that the performance of these buildings is equivalent to a site-built home, all else being equal. This hypothesis will be tested using post-hurricane data collected by the PIs following Hurricanes Irma and Michael.

There are three primary tasks within the scope of this project. A summary of the methods and major findings from each task are provided in the following sections.

Modular (or manufactured homes) are defined in Section 1 of this report. This definition specifies that modular homes are manufactured off-site but conform to the provisions of the

Florida Building Code, unlike mobile homes (oftentimes also called manufactured homes if built after 1976) which conform to the federal Housing and Urban Development (HUD) standards. A review of a sample of modular home plans from the Florida Department of Business and Professional Regulation suggested most modular homes are constructed to conform specifically to the Florida Building Code Residential. The relative hurricane performance of modular homes vs traditional site-built homes is examined in this study using post-hurricane building performance data from Hurricanes Irma (2017) and Michael (2018).

3.1 Methods

A sample of 23 modular homes affected by Hurricane Irma was contained in the posthurricane building performance dataset collected for a previous project (Prevatt and Roueche, 2018). Data for each home included the year built¹, first floor elevation, roof shape, structural system, building envelope materials, and component-level damage ratios (percentage of a building component that is damaged or removed by the hurricane). The Monroe County building department provided permit files for each of the modular homes to the research team which contained the manufacturer and building plans. From the permit files, the reconnaissance data was supplemented to obtain the design wind speed, exposure condition, and transverse lateral net wall pressure. Prior to 2002, modular home designs conformed to the Standard Building Code and had a design wind speed (50 year mean reoccurrence interval) of either 115 mph, 130 mph or 155 mph. Modular home designs after 2002 conformed to the Florida Building Code and had design wind speeds between 150 mph and 175 mph. Where noted, all but one home was designated as Exposure C. While the permit files contained the structural design details for each home, cladding details (product approval number, manufacturer, etc) were not documented. The maximum wind speed at each modular home location were interpolated from the ARA wind field (Vickery et al. 2017).

Modular homes were identified in Bay County using the public permit search platform (<u>http://www.applications.co.bay.fl.us/Search/permit.aspx</u>), which identified permits for modular homes as type DCA Modular. Thirty-eight homes were identified and located using this approach, but only twenty-eight were within the geographic boundaries of the supplemental data we used to assess damage and building attributes. For Gulf County, the

¹ Year built for modular buildings can refer to either year of manufacture or year of installation, which may not be the same year. Where possible, we use the year of manufacture since that is best reflective of the code to which it was designed.

county interactive GIS platform was used to locate modular homes by searching for a specific parcel use code that was used for parcels containing modular homes. The GIS platform allowed parcels to be searched and extracted as a CSV file for further analysis. Twenty modular homes were selected using this platform for Gulf County. In addition, two modular homes had been assessed by the research team on-site during the previous, broader Hurricane Michael deployments. Altogether, this resulted in 50 modular homes for both Bay and Gulf Counties. Since only two of the homes were assessed in the on-site deployments, damage and building attributes for the remaining 48 homes were sourced entirely from supplemental data sources. Damage and building attributes were evaluated using licensed oblique and nadir pre- and post-hurricane imagery provided through the Eagleview ConnectExplorer platform (Figure 1). Where available, Google Streetview was also used to document damage and building attributes, utilizing the pre- and post-hurricane imagery. Public county records and permit files were used to obtain the year of installation and confirm other details such as roof cover type or wall cladding type. Permit documents were requested for the homes to identify the manufacturer and structural design parameters but were not available in Bay County due to Hurricane Michael damaging the Bay County Public Services building, destroying many of the paper records containing the permit files. A public records request was submitted to Gulf County that has not yet been completed at the time of this report. Building departments for both counties tried to be helpful as much as possible but were understandably overwhelmed with the rebuilding process.

Figure 1. Supplemental data sources for identifying hurricane damage to modular homes. (Left) Eagleview ConnectExplorer platform (imagery collected 10/21/2018), and (right) Google Streetview (imagery collected June 2019).

Peak gust wind speeds were estimated at each home location in Gulf and Bay County using the ARA wind field (Vickery et al. 2018). The wind exposure surrounding most homes was noted to be suburban (Exposure B).

The performance of modular homes relative to site-built homes was assessed by selecting a sample of site-built single-family homes to match the key expected causal factors, specifically (1) a similar range of construction year, (2) a similar range of estimated wind speeds, (3) wood-frame construction, (4) one- or two-stories, and (5) similar first floor elevations. Regarding item (5), none of the modular homes in Bay and Gulf Counties had a first-floor elevation more than approximately 2 ft, so only site-built homes installed at grade level were used for comparison. In Monroe County, many of the modular homes were elevated, and so similarly elevated homes were used for comparison. In all, 50 homes were used from Gulf and Bay Counties for comparison, while 20 site-built homes in Monroe County were used. The lower sample size in Monroe County was simply due to a lack of buildings similar to modulars in the Hurricane Irma damage database. Modular homes tended to be newer (post 2002 FBC), and were wood-frame, while newer site-built homes tended to be constructed out of concrete masonry units or other forms of concrete construction and therefore were not an equivalent comparison. A summary of the modular and site-built homes is provided in Table 1, while a list of all homes used is provided in Appendix A. Locations of all homes are plotted in Figure 2.

Table 1. Characteristics of modular and site-built homes used to evaluate relative hurricane wind performance.

Parameter	Gulf/Bay	Gulf/Bay	Monroe	Monroe
	Modular	Site-Built	Modular	Site-Built
Year Built (Mean / Std. Dev.)	2007 / 4.29	2007 / 7.32	2003 / 4.76	2006 / 7.20
Wind Speed, mph (Mean / Std. Dev.)	130 / 15.0	133 / 9.19	116 / 2.65	116 / 3.44
Stories (# 1 story / # 2 story)	42 / 8	39 / 11	20/3	16 / 4
First Floor Elevation, ft (Mean / Std. Dev.)	0.2 / 1.16	0 / 0	7.43 / 3.15	9.1 / 1.25

The relative performance of site-built and modular homes was assessed using the nonparametric Kruskal-Wallis method to test the null hypothesis that the wind damage rating (described in Section 5.1.2) for both site-built and modular homes was the same. Results of the Kruskal-Wallis test are presented as a p-value, which can be treated as the probability that the null hypothesis is true. The same approach was used for the component-level damage ratios as well, which included damage ratios for roof cover, roof sheathing, roof structure, wall cladding, and wall structure.

Figure 2. Locations of modular and site-built homes used to evaluate relative wind performance during (left) Hurricane Irma (2017); and (right) Hurricane Michael (2018). Circles indicate site-built homes and triangles indicate modular homes.

3.2 Results

The overall performance of modular homes and site-built homes in Hurricanes Irma (2017) and Michael (2018) were similar for our sample sets. In homes impacted by Hurricane Irma (2017), cladding (roof cover and wall cladding) was more vulnerable in modular homes, while roof sheathing and wall structure and sheathing was more vulnerable in site-built homes. Only the difference in wall cladding damage was significant at the 95% confidence level (calculated as (1 - p-value)*100%). None of the homes in this Irma sample set, either modular or site-built, experienced damage to the roof structure.

In Hurricane Michael, only minor differences were observed in the wind performance of modular and equivalent site-built homes. The mean wind damage rating was slightly lower in modular homes than site-built but was not statistically significant. Modular homes experienced significantly lower roof cover damage, although in both types of homes a disproportionate percentage of roof cover was still damaged relative to other building components. Wall substrate and wall structure damage was significantly higher in the modular homes this sample set, but this is only because the sample of site-built homes used in the comparison did not experience any wall structure damage. As shown in Section 5.2.1, some site-built homes in the overall dataset did experience wall substrate and wall structure collapse due to wind. Wall cladding performance in modular homes impacted by Hurricane Michael was equivalent to site-built homes unlike in Hurricane Irma.

Curiously, wall cladding damage in our samples of both site-built and modular homes impacted by Hurricane Irma were higher on average than that observed in our Hurricane Michael sample set, despite the absolute wind speed estimates being lower in Hurricane Irma, and the wind load ratio (squared ratio of estimated wind speed to design wind speed) being much lower in Irma than in Hurricane Michael. Overall wind damage ratings were similar in both sample sets despite the difference in hazard characteristics between the two storms.

Damage	Statistic	Site-Built	Modular	Kruskall-Wallis
Parameter		Sample	Sample	p-value
Wind damage rating	Mean	1.55	1.96	0.098
	Std. Dev.	0.94	0.64	
Roof structure damage	Mean	0	0	-
	Std. Dev.	0	0	
Roof substrate damage	Mean	2.50	2.17	0.322
	Std. Dev.	5.50	8.50	
Roof cover damage	Mean	20.0	29.6	0.131
	Std. Dev.	20.0	21.8	
Wall structure damage	Mean	1.50	0.43	0.894
	Std. Dev.	6.71	2.09	
Wall substrate damage	Mean	2.50	0.87	0.246
	Std. Dev.	7.16	4.17	
Wall cladding damage	Mean	13.0	20.9	0.050
	Std. Dev.	21.3	18.3	

Table 2. Relative performance of site-built (N = 20) and modular (N = 23) homes in Monroe County following Hurricane Irma (2017).

Damage	Statistic	Site-Built	Modular	Kruskall-Wallis
Parameter		Sample	Sample	p-value
Wind damage rating	Mean	1.62	1.48	0.398
	Std. Dev.	0.73	1.25	
Roof structure damage	Mean	0.32	1.06	0.388
	Std. Dev.	2.12	4.95	
Roof substrate damage	Mean	1.46	1.34	0.685
	Std. Dev.	4.78	5.09	
Roof cover damage	Mean	20.5	14.9	0.033
	Std. Dev.	22.9	20.38	
Wall structure damage	Mean	0 / 0	0.94	0.042
	Std. Dev.	0	4.85	
Wall substrate damage	Mean	0 / 0	1.22	0.003
	Std. Dev.	0	4.91	
Wall cladding damage	Mean	5.64	5.36	0.117
	Std. Dev.	12.10	8.75	

Table 3. Relative performance of site-built (N = 50) and modular (N = 50) homes in Bay and Gulf County following Hurricane Michael (2018).

4 TASK 2: HURRICANE MICHAEL DATA ENHANCEMENT

The original Hurricane Michael dataset described in Prevatt and Roueche (2019) contained 737 assessments, of which 704 were individual building assessments and the remaining 33 were general area assessments that broadly described the performance of multiple buildings within a specific area or region. Approximately 220 of the 704 building assessments were enriched in the Phase I study to quantify precise building attributes and component-level building damage extent. The objective of this Phase II effort was to extend the study to enrich the remaining 484 buildings affected by Hurricane Michael and perform an exploratory evaluation of the pre- and post-Florida Building Code building performance. The final dataset was also expanded to include 48 additional modular homes identified and assessed as described in Section 4, resulting in a total of 752 individual building assessments in the database.

4.1 Methods

The data enhancement and quality control process followed that developed by StEER (Roueche et al. 2019). Following this approach, the raw door-to-door (D2D) field data was supplemented with additional data sources including the processed densified point clouds and 3D meshes generated from the UAS data (using Structure-from-Motion techniques), the vehicle-mounted street-level panoramas, Bay and Gulf County property assessor databases, nadir imagery of affected areas (~ 25 cm ground sample distance) provided by the National Oceanic and Atmospheric Administration (NOAA), licensed oblique and nadir imagery from the Eagleview® Pictometry platform, and pre-event imagery from the Google Maps and Google Streetview platforms. Using these supplemental data sources, we enhanced the raw D2D dataset to define a full suite of building attributes, define as much of the structural load path as possible, and more precisely quantify damage by evaluating the percentage of damaged components for the roof structure, roof substrate, roof cover, wall structure, wall substrate, wall cladding, and fenestration. The damage ratios were estimated using all visible portions of the building, and any portion of the component no longer visible on the building was classified as damaged. The enhanced D2D dataset was quality controlled using both automated checks and reassessment of randomly sampled records to minimize errors and maximum consistency and reliability of the final dataset. Finally, the D2D dataset was enhanced with hazard and other contextual parameters, such as the design wind speed and the estimated maximum wind speed. This enhanced dataset is the basis of the current study, and includes both wind- and surge-induced damage. A detailed study of surge performance during Hurricane Michael was already performed by Kennedy et al (2020) using a portion of

the data contained within this dataset. Major findings from Kennedy et al. (2020) are summarized in Section 4.3. The analysis in this report focuses on wind-induced damage and excludes buildings from the study that had observable structural surge damage. A spatial view of the dataset with wind damage ratings is provided in Figure 3.

Figure 3. Assessment locations in Florida relative to estimated peak gust wind speeds (Vickery Peter et al. 2018) and best hurricane track (Beven et al. 2019). Wind damage rating are provided in the two inset figure for Panama City and Mexico Beach.

4.1.1 Data Quality

Each record in the Fulcrum database underwent an extensive Data Enrichment/Quality Control (DE/QC) process outlined in Roueche et al (2019). Records were updated to a specific stage, indicating the level of detail, and in some cases, uncertainty. As each record completed one of these stages, a code is updated within the record. A QC notes field is used to capture any relevant information related to the processing of the record, such as a source of unusually high uncertainty.

For all assessments, at least two data librarians participated in the DE/QC process of each record separately to help catch errors and reduce uncertainties. In addition, the entire dataset underwent a number of macro-level QC checks to identify potential errors, e.g., filtering the dataset for blank entries in the number of stories, searching for invalid field entries (e.g., 72

was entered for first floor elevation (ft) due to unit error), and more. Every effort was made to find and fix major errors or inconsistencies. However, there may still be small errors in a few records, and there is also uncertainty present due to incomplete data and/or use of engineering judgement.

To better quantify the potential for errors in the dataset, a random sample of 80 records from the preliminary final dataset was drawn and re-processed by members of the research team. Out of 6,240 fields contained within these records (78 per record), 100 fields were changed due to errors, yielding a change rate of 1.6%. Nearly 30% of the errors occurred in buildings with an overall damage rating classified as Destroyed. These buildings were more difficult to assess because less of the information could be inferred from the on-site investigations, requiring more extensive efforts to pull information from pre-event data sources that provided more opportunities for errors to be made. The most common error was a misclassification of wind damage rating (12 out of 80), but generally the wind damage rating was only adjusted by +/- 1 category (e.g., from Minor to Moderate). Other errors of note were the misclassification of the roof shape, misidentification of wall cladding, and misidentification of the foundation type.

4.1.2 Damage Measures

Damage was evaluated in two ways for most buildings:

1) Damage Ratings. Categorical damage ratings were assigned for wind, surge, and rainwater ingress hazards if possible. Each of these hazard-specific damage ratings have defined criteria as defined in Table 4, Table 5, and Table 6. An aggregate overall damage rating was also subjectively assigned to represent the worst-case damage state of the three hazard-specific damage ratings. The wind damage ratings are based on more quantitative criteria, while the surge and rainwater damage ratings follow more qualitative criteria. These criteria were developed primarily for single-family homes (Roueche et al. 2019), but were broadly applied to all building types in this study. The distribution of wind and surge damage ratings for the entire dataset is provided in Figure 4. Only 59 homes were accessible to allow for reasonable estimation of the rainwater ingress damage, 27 of which had some damage noted (Figure 5).

2) Damage Ratios: These are numerical quantities representing the percentage of a building component that is damaged or destroyed. Building components included roof structure, roof substrate (e.g., roof sheathing), roof cover, wall structure, wall substrate, wall cladding, fenestration, soffit, and fascia. Any component damaged or missing from the building was considered damaged. As a result, the damage ratios for cladding components can be

overestimates of the damage, since cladding attached to roof or wall structure that was damaged is always classified as damaged, even though the cladding may have stayed attached to the failed substrate or structure. For example, if 20% of the roof structure (trusses or rafters) is removed, the roof sheathing and roof cover attached to it is also considered damaged, meaning that roof sheathing and roof cover damage must be at least 20%. In reality, the roof structure may have been the first component to fail, taking the roof sheathing and cover with it. Separating these failures and getting exact component damage ratios is generally not feasible, and so adjustments for this potential overestimation must be handled in the data analysis.

In the subsequent analysis presented in this study that focuses solely on wind performance, damage ratios were processed in the analysis to strip out any surge-induced damage. This was done by ignoring wall cladding and fenestration damage in homes with at least a moderate surge damage rating (N = 157), ignoring the wall structure damage if the surge damage rating was Very Severe or higher (N = 101), and finally ignoring the building altogether if the damage rating was Partial Collapse or higher (92).

Figure 4. Distribution of wind and surge damage ratings.

Figure 5. Distribution of rainwater ingress damage ratings (N = 59).

		Presence or Extent of Failure in:						
Damage State [1]	Short Description	Roof or Wall cover	Window or door	Roof or Wall substrate	Roof struct.	Wall struct. [2]		
0 No damage or very minor damage	No visible exterior damage	0%	No	No	No	No		
1 Minor damage	Damage confined to envelope	> 0% and <u><</u> 15%	1 No		No	No		
2 Moderate damage	Load path preserved, but significant repairs required	> 15% and <u><</u> 50%	> 1 and <u><</u> the larger of 3 and 20%	1 to 3 panels	No	No		
3 Severe Damage	Major impacts to structural load path	> 50%	> the larger of 3 and 20% and <u><</u> 50%	> 3 and <u><</u> 25%	<u><</u> 15%	No		
4 Destroyed	Total loss. Structural load path compromised beyond repair.	> 50%	> 50%	> 25%	> 15%	Yes		

Table 4.	Wind	damage	rating	criteria.

Notes:

[1] A building is in the damage state if any of the shaded damage indicators in the corresponding row are observed.

[2] Wall structure refers to walls in living area only. The ground floor of elevated structures often have breakaway walls that can be easily damaged by storm surge. This damage is ignored in assigning the overall damage rating for wind.

Table 5. Surge damage rating criteria.

Damage State	Description
0 None	No floodwater impacts
1 Minor	Breakaway walls or appurtenant structures damaged or removed WITHOUT physical damage to remaining structure. No flood impacts the building.
2 Moderate	Some wall cladding damage from flood-borne debris. Breakaway walls or appurtenant structures damaged or removed WITH physical damaged to remaining structures.
3 Severe	Removal of cladding from "wash through" of surge without wall structural damage.
4 Very Severe	Failure of wall frame, repairable structural damage to any portion of building, or < 25% of building plan area unrepairable.
5 Partial Collapse	Building shifted off foundation, overall structure racking, > 25% of structure unrepairable.
6 Collapse	Total structural failure (no intact structure)

Table 6. Rainwater ingress damage rating criteria.

Damage State	Description
0 Unknown	No information concerning rainwater ingress is available; no access to interior.
1 None Visible	Interior was assessed but no evidence of rainwater ingress was observed.
2 Minor	Minor ingress through doors, windows, or isolated roof leaks.
3 Moderate	Visible puddles of water or damaged contents around multiple doors and windows and multiple roof leaks leading to puddling or damage to contents.
4 Severe	Severe inundation leading to partial collapse of roof ceiling, extensive puddling and interior contents loss.
5 Complete	Complete inundation throughout the structure with majority of contents affected.

4.1.3 Wind Hazard Parameters

The estimated maximum gust wind speed at the location of each building in the dataset was sourced from Vickery et al. (2018), which used a hurricane wind field model based on the full nonlinear solution of the equations of motion of a translating hurricane (Vickery et al. 2000). The hurricane wind field model was conditioned to Hurricane Michael using minimum central pressure, location of minimum central pressure, and the radius of maximum wind speed data provided by the National Hurricane Center at each advisory. Vickery et al. (2018) used ground-truth observations from the Florida Coastal Monitoring Program (Balderrama et al. 2011) and other surface observation stations to further refine the wind field model. Maximum wind speeds, standardized as 3 second gusts at 10 m height in open terrain ($z_0 = 0.03$ m), were provided over a regular grid with approximately 1 km spacing in the regions of interest. We then linearly interpolated these maximum wind speeds to estimate the maximum wind speed at each building location for the current study.

To provide further context to the estimated hazard conditions, the design wind speed and applicable design drag pressure, and the estimated building importance category, were also determined for each structure using the construction year of each building. The lateral design pressure (drag pressure) is the net lateral pressure on the building using applied stress design (ASD), and is defined as follows in Equation (1):

$$LDP = 0.00256K_z K_d K_{zt} V_{design}^2 (Cp_{ww} - Cp_{lw}) (ASD_{WindLoadFactor})$$
(1)

where from ASCE 7 (ASCE 2017), K_z is the height and terrain coefficient, taken to be 0.85 (assuming open terrain and a mean roof height of 15 ft), K_d is the directionality coefficient taken to be 0.85, K_{zt} is the topographic coefficient taken to be 1, V_{design} is the 3-second gust wind speed at 33 ft above ground in open terrain for a specified mean reoccurrence interval, Cp_{ww} and Cp_{lw} are the windward and leeward wall pressure coefficients taken as 0.8 and - 0.5 respectively, and finally $ASD_{WindLoadFactor}$ is the ASD wind load factor. An example of the calculations is provided in

Table 7 for a Risk Category II building in Mexico Beach, FL. Data is shown for buildings constructed prior to 2002 based on the Standard Building Code, which went into effect in 1974, when Florida required jurisdictions to adopt a model building code of some form. The majority of Florida adopted the Standard Building Code, which at the time required a lateral design pressure of 25 psf for buildings in coastal regions with heights below 30 ft.

The calculations in

Table 7 demonstrate a significant increase in lateral design pressure in the 2001, 2004 and 2007 editions of the Florida Building Code, followed by a reduction closer to the pre-FBC lateral design pressure in subsequent editions of the code. The major reason for the reduction was the change to ultimate design wind speeds in ASCE 7-10. Ultimate wind speeds in the Florida panhandle were very similar to the serviceability wind speeds in ASCE 7-05 and prior editions (50 year mean reoccurrence interval [MRI]), yet were now used with a 0.6 load factor rather than a 1.0 load factor. Figure 6 illustrates this effect by plotting the ASCE 7-10/16 wind contours for a Risk Category II building (700 year MRI) against the same from ASCE 7-98/02/05. The 700 year MRI for ASCE 7-98/02/05 is obtained by converting from the 50 year MRI wind speeds, which are provided in the ASCE 7-98/02/05 standards, using Equation (2):

$$V_{700\nu r} = V_{50\nu r} * \sqrt{0.6} \tag{2}$$

where 0.6 is the load factor used to convert between serviceability and ultimate wind loads (Line and Coulbourne 2012). The map shows that equivalent wind speeds in ASCE 7-98/02/05 were higher than those in ASCE 7-2010/2016 for the regions impacted by Hurricane Michael.

The lowered design wind speeds do not necessarily mean that buildings constructed to 2010 FBC and beyond should perform worse however. Changes to the wind-borne debris requirements, use of prescriptive provisions, changes to other aspects of the ASCE 7 wind design standards beyond wind speed (including increases in magnitudes of some aerodynamic coefficients), and multiple more minor code enhancements (e.g., ring shank nails required for roof decking in 2007 FBC, or limitations on the span of wood structural panels

used as opening protection added in 2017 FBC) are also contributing factors. The net effect of these will be explored later in this report.

Figure 6. ASCE 7 design wind speeds (700 year MRI) relative to assessment locations and estimated peak 3 sec gusts (Vickery Peter et al. 2018)ic during Hurricane Michael.

Table 7. Lateral	design	pressures l	by building	code	edition f	for a	typical	building	; in N	lexico
			Beach	, FL.						

Code Edition	Effective Date	ASCE	Design Wind	ASD Wind Load	Lateral Design
		Reference	Speed (mph)	Factor	Pressure (psf)
Pre-FBC	Pre-2002	-	-	-	25
2001 FBC	March 2002	ASCE 7-98	130 mph	1	40.6
2004 FBC	October 2005	ASCE 7-02	130 mph	1	40.6
2007 FBC	March 2009	ASCE 7-05	130 mph	1	40.6
2010 FBC	March 2012	ASCE 7-10	133 mph	0.6	25.5
2014 FBC	June 2015	ASCE 7-10	133 mph	0.6	25.5
2017 FBC	FBC Dec. 2017 ASCE 7-10		133 mph	0.6	25.5

The distribution of buildings in the dataset by building code edition is provided in Figure 7, and was used to capture some of the effects of building code changes in analysis described later in this report. It should be noted in Figure 7 that SBC w/ Inspections indicates a period of time (1994-2001) when the Standard Building Code was in use with licensed inspectors. Legislation was passed in 1994, in response to Hurricane Andrew's impacts on Florida in 1992, requiring building inspectors to be licensed.

Figure 7. Distribution of buildings in the dataset by building code edition (N = 751).

To further assess wind hazard parameters, accounting for wind-borne debris (WBD) requirements in the analysis was also explored, but the application of the WBD requirements by local municipalities was not clear. Independent of the well-known changes to the windborne debris region ensuing from the "Panhandle Exemption", the wind-borne debris region in the Florida panhandle has always included buildings within 1 mile of the mean high water line since 2002. The precise delineation of the wind-borne debris region is not apparent however, as the coastal mean high water line is constantly changing and is generally not precisely defined. One building official in Bay County indicated they "just measure the distance to the Gulf". Others indicated it was left to the judgement of the individual inspector, which in much of Bay and Gulf County is handled by private companies. In an area like Panama City, with multiple bays and inlets, there may be confusion as to the practical delineation of the windborne debris region. For this study, we estimated the WBD region by evaluating the distance of each building from the coast, defined in two ways: 1) using the latest NOAA shoreline GIS data, and 2) drawing an approximation for the border of the main body of water forming the Gulf of Mexico. These two approximations for the coastal mean high water line are shown in Figure 8.

Figure 8. Approximate delineation of the wind-borne debris region based on 1 mile from mean high water line, subjectively shown here as the coastline bordering the Gulf of Mexico.

4.1.4 Building Types

The raw D2D dataset classified each building into one of 24 different building types as defined in Roueche et al. (2019), and broadly classified in Figure 9. For this study, we further classified each building as nominally falling under the jurisdiction of the Florida Building Code (FBC) versus the Florida Building Code Residential (FBCR). The Florida Building Code denotes this distinction in Section 101.2-Exceptions(1) as follows:

"Detached one- and two-family dwellings and multiple single-family dwellings (townhouses) not more than three stories above grade plane in height with a separate means of egress and their accessory structures shall comply with the Florida Building Code, Residential"

In our dataset, this delineation was made by considering all single-family and multi-family homes (duplexes, townhomes, etc) three stories or less (two stories if an elevated structure) as FBCR, including modular homes but excluding mobile/manufactured homes. This criteria was used for all buildings independent of year built, resulting in 641 FBCR buildings and 143 FBC buildings, as shown in Figure 9.

4.2 Findings Related to Wind Hazards

Findings from analysis of the wind damage dataset are presented in two ways. First, we present a macro-level analysis of wind performance relative to the Florida Building Code. Second, we briefly summarize performance of roof cover, wall cladding and large openings. Collectively these analyses summarize some key findings in line with the scope of this project.

4.2.1 Wind Performance Relative to the Florida Building Code

A broad comparison is first conducted between buildings constructed before the 2001 Florida Building Code (pre-2001 FBC) and after (post-2001 FBC) construction using the ordinal wind damage ratings as described in Section 4.1.2. Comparisons are made for all buildings combined, and separately for buildings that would be expected to fall under the Florida Building Code (hereafter designated FBCB) and the Florida Building Code Residential (hereafter designated FBCR). The analysis (Table 8) shows that post-2001 FBC construction overall performed significantly better (p < 0.01 based on Kruskal-Wallis test) than pre-2001 FBC construction during Hurricane Michael with a mean wind damage rating of 2.08 for pre-2001 FBC buildings compared to 1.59 for post-2001 FBC buildings, despite both classes of buildings experiencing nominally the same mean estimated wind speeds per the ARA wind field. The improvements are also demonstrated in the distribution of wind damage ratings (Figure 10 and Figure 11), with post-FBC buildings experiencing no damage or minor damage more often than pre-FBC buildings. The improved performance correlates with strengthened wind code requirements, as demonstrated by a comparison of the mean wind load ratio for pre- and post-2001 FBC buildings. While estimated wind speeds were nominally the same for pre- and post-2001 FBC construction, the mean wind load ratio (ratio of demand to design)

was 22% lower in post-2001 FBC buildings, corresponding well to the 24% reduction in mean wind damage rating for post-2001 FBC buildings. The same trend generally held true for both FBC and FBCR buildings. The difference in mean wind damage rating for pre-2001 FBCB and post-2001 FBCB was smaller (8.3%) and not statistically significant (p = 0.39), however the estimated wind speed for post-2001 FBCB buildings was 138 mph compared to 126 mph for pre-2001 FBCB buildings, resulting in mean wind load ratios that were nominally the same. The sample of post-2001 FBCB buildings constructed to the Florida Building Code in our dataset experienced higher wind speeds on average during Hurricane Michael then those built prior to the Florida Building Code yet still sustained slightly lower wind damage on average.

Extending the analysis to examine individual building components, the largest improvements from pre-FBC to post-FBC buildings is found in the MWFRS elements (roof structure and substrate/decking, and wall structure and substrate/sheathing), with smaller but still statistically significant improvements in cladding (roof cover) and fenestration (windows, doors) performance. Wall cladding was the one individual component that did not have a statistically significant improvement in performance between pre- and post-FBC for all buildings, with mean wall cladding damage ratios of 10.4% and 8.3% respectively for pre- and post-FBC buildings. Meanwhile, roof cover performance in post-FBC buildings was significantly improved over pre-FBC buildings, but roof cover was also by far the most vulnerable component, with mean damage ratios of 29% and 20% respectively. Performance improvements with time for roof and wall cladding are more difficult to assess however because year built is not a perfect proxy for the date of installation of the cladding material, particularly for older buildings. A deeper analysis of permit records would provide a more accurate assessment of temporal differences in roof and wall cladding performance.

Examining wind performance by specific code editions reveals that overall, pre-1994 buildings are the most vulnerable (Figure 12), with gradual improvements in each era until somewhat of a plateau is reached after the 2004 FBC (effective 2005) as shown in Figure 13 (note the square root y-axis used to better visualize differences in lower damage values) and Table 9. The data show the following trends:

- MWFRS failures (roof structure, roof sheathing/substrate, wall structure and wall sheathing/substrate), even during above design conditions, are rare in post-FBC buildings.
- Fenestration damage was also very low (less than 5% of fenestration damaged on average) in post-FBC construction.
- Roof cover performance shows a noticeable trend towards less damage on average with each subsequent code edition but this is likely due to improved requirements and the inverse relationship with material degradation and aging.

- Wall cladding damage on a given building is typically not as extensive as roof cover damage (roughly half on average), but actually shows an increasing trend with each code edition, the highest average wall cladding damage ratio (15%) occurring in buildings constructed between 2016-2018 and exceeding the average roof cover damage for that same era.
- The most marked improvements over time occur around 1994 and 2002 (Figure 13). The 1994 date is tied to the requirement for licensed inspectors in 1994, and perhaps an increased awareness of the importance of wind-resistant construction following Hurricane Andrew (1992). The 2002 date corresponds to the adoption of the first statewide Florida Building Code, resulting in another noticeable decrease in MWFRS and, to some extent, fenestration damage.

A few caveats are worth noting however regarding any trends demonstrated in Figure 13.

- The data shown here are not normalized by wind speed, although as shown in Table 9, samples each era had similar wind speed magnitudes, particularly in relation to the level of uncertainty inherent to the wind speed estimates.
- Year built is an imperfect proxy encompassing many different, and at times conflicting, factors, including changes to codes and standards, changes in construction practice and materials, availability of skilled labor, aging and degradation of materials (particularly relevant to cladding materials), and post-construction wind mitigation retrofit activity. For example, it is highly unlikely that a building constructed in the 1980s still has the original roof cover or even wall cladding, but any upgrades made to the building would not be captured by the year built.
- The damage ratios for fenestration and cladding are upper bounds because they assume that MWFRS failures also fail any cladding or fenestration supported by the MWFRS.

Considering FBC buildings only (i.e., not Florida Building Code Residential buildings), Figure 14 shows a more even distribution of wind performance across all eras, although pre-2002 buildings are still by far the most vulnerable. Table 10 shows that there is some evidence that the higher design wind speed in the 2002-2011 period improved MWFRS performance of buildings in that era compared to more recent buildings, although the sample size is relatively small (N = 12 for 2002-2011 buildings vs N = 12 for 2012-2018 buildings). Wall structure damage on average was higher in the 2012-2018 era (ASCE 7-10) than in the 2002-2011 era (ASCE 7-05), but the significance of this difference is limited by the small sample size, making it relatively easy to skew results based on a few non-representative samples (i.e., sampled because damage was present). Additional samples would need to be added from the supplemental data sources to explore performance differences between these eras more robustly.

	Time Period	Pre-2002	Post-2001		
	Number of Samples	326	323		
	0, No Damage (%)	8.9	11.1	Kruskall-Wallis	
	1, Minor (%)	24.2	38.7		
Wind Damage Rating	2, Moderate (%)	31.3	34.4	p-value	
	3, Severe (%)	21.2	11.8		
	4, Destruction (%)	14.4	4.0		
Wind Damage Dation	Mean	2.08	1.59	- 0.01	
wind Damage Rating	StD	1.18	0.97	< 0.01	
	Mean	9.9	1.5	< 0.01	
Roof Structure Damage (%)	StD	22.1	8.2	< 0.01	
Deef Substrate Demose (9/)	Mean	12.0	2.2	< 0.01	
Roof Substrate Damage (%)	StD	23.9	9.3	< 0.01	
	Mean	28.9	19.7	< 0.01	
Rool Cover Damage (%)	StD	29.5	24.1	< 0.01	
	Mean	6.1	0.7	< 0.01	
vvall Structure Damage (%)	StD	16.7	3.7	< 0.01	
Mall Substrate Demose (0/)	Mean 6.0		1.0	< 0.01	
waii Substrate Damage (%)	StD	15.7	4.6	< 0.01	
Mall Cladding Damage (9()	Mean	10.4	8.3	0.029	
vvall Cladding Damage (%)	StD	18.8	14.7	0.928	
	Mean	9.4	1.4	< 0.01	
MVVFRS (%)	StD	19.3	5.8	< 0.01	
O is static $r_{\rm c}$ (0/)	Mean	19.3	10.4	- 0.01	
Cladding (%)	StD	22.5	12.6	< 0.01	
	Mean	8.7	3.3	- 0.01	
Fenestration (%)	StD	18.7	8.4	< 0.01	
	Contextual Para	meters			
	Mean	135.6	134.1	0.005	
os Gust wind Speed (mph)	StD	11.9	11.7	0.295	
Distance to the Coast (Mean	3.4	0.9	< 0.01	
Distance to the Coast (mi)	StD	9.6	2.1	< 0.01	
	Mean	1.78	1.39	- 0.04	
vvind Load Ratio	StD.	0.30	0.41	< 0.01	

Table 8. Statistical summary of pre- and post-2001 Florida Building Code performance for all buildings.

	Code	Pre- SBC	SBC	SBC + Coastal	SBC w/ Inspect.	2001 FBC	2004 FBC	2007 FBC	2010 FBC	2014 FBC
	Time Period	1900- 1973	1974- 1985	1986-1993	1994-2001	2002- 2004	2005- 2008	2009- 2011	2012- 2015	2016- 2019
	Number of Samples	96	89	59	78	33	111	40	50	87
	0, No Damage	15	9	5	5	12	12	10	16	8
Wind	1, Minor (%)	26	17	31	27	18	38	35	46	46
Damage	2, Moderate (%)	29	29	17	45	45	38	43	24	29
Rating	3, Severe (%)	16	27	29	17	18	8	10	12	14
	4, Destruction (%)	15	18	19	6	6	5	3	2	3
Wind	Mean	1.9	2.3	2.3	1.9	1.9	1.6	1.6	1.4	1.6
Rating	StD	1.3	1.2	1.2	1.0	1.1	1.0	0.9	1.0	0.9
Roof Structure	Mean	6.2	16.3	14.0	4.4	5.5	1.0	1.0	1.0	0.6
Damage (%)	StD	15.9	29.6	25.4	12.5	20.3	5.3	5.7	4.5	3.0
Roof Substrate	Mean	8.5	19.2	17.4	5.0	7.6	1.5	1.3	1.5	1.0
Damage (%)	StD	18.8	31.1	27.7	12.6	21.1	6.1	5.8	5.6	3.8
Roof	Mean	23.3	36.3	33.5	23.7	33.0	22.4	28.3	13.9	10.1
Damage (%)	StD	24.4	34.2	33.6	23.3	30.4	23.6	27.2	23.8	14.6
Wall	Mean	3.3	9.7	9.6	3.2	0.8	0.3	0.3	1.0	0.7
Damage (%)	StD	10.0	22.2	18.9	13.1	4.4	1.4	1.1	5.1	3.6
Wall	Mean	3.6	8.1	12.0	2.0	1.1	0.3	0.4	2.3	0.8
Damage (%)	StD	10.7	19.8	21.2	7.6	5.3	1.5	1.8	6.8	3.7
Wall	Mean	4.8	13.6	16.5	6.6	4.4	5.4	6.9	5.9	14.9
Damage (%)	StD	11.1	21.9	22.7	13.4	9.1	9.2	10.8	12.8	21.1
	Mean	5.6	15.1	13.9	4.5	3.5	0.8	0.7	1.4	0.9
MWFRS (%)	StD	12.2	25.6	23.4	12.0	12.0	3.3	3.3	5.2	3.0
Cladding	Mean	14.8	25.7	24.1	13.8	16.6	11.4	14.4	8.1	5.5
(%)	StD	17.3	28.0	26.9	13.8	16.4	11.8	13.6	12.6	7.7
Fonostrati	Mean	3.9	13.0	13.9	4.8	4.7	2.7	3.3	3.4	3.1
on (%)	StD	9.5	24.2	24.4	10.4	9.0	6.1	7.3	7.5	10.3
P				Contextua	Information					
3s Gust Wind	Mean	129.9	137.2	137.6	138.9	139.6	130.5	130.4	139.7	135.3
Speed (mph)	StD	10.4	11.7	11.2	12.3	10.9	11.4	10.4	10.7	11.4
Distance	Mean	4.4	6.2	0.4	1.1	0.8	1.4	0.9	0.6	0.6
Coast (mi)	StD	11.9	12.8	0.5	2.4	0.8	3.2	1.7	1.3	0.6
Wind	Mean	1.6	1.8	1.8	1.9	1.2	1.1	1.1	1.9	1.7
Ratio	StD	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.3	0.3

Table 9. Statistical summary of building wind performance for all buildings by major building code era. Colors indicate gradation across rows from lowest (dark green) to highest (red).

	Code	Pre- SBC	SBC	SBC + Coastal	SBC w/ Inspect.	2001 FBC	2004 FBC	2007 FBC	2010 FBC	2014 FBC	
	Time Period	1900- 1973	1974- 1985	1986-1993	1994-2001	2002- 2004	2005- 2008	2009- 2011	2012- 2015	2016- 2019	
	Number of Samples	22	27	14	14	2	6	4	5	7	
Wind Damage Rating	0, No Damage (%)	5	0	7	7	0	0	0	20	0	
	1, Minor (%)	18	11	29	14	0	33	50	0	14	
	2, Moderate (%)	23	22	14	36	50	33	25	40	43	
	3, Severe (%)	23	33	36	14	50	0	0	20	29	
	4, Destruction (%)	32	33	14	29	0	33	25	20	14	
Wind	Mean	2.6	2.9	2.2	2.4	2.5	2.3	2.0	2.2	2.4	
Rating	StD	1.3	1.0	1.3	1.3	0.7	1.4	1.4	1.5	1.0	
Roof Structure Damage (%)	Mean	11.8	24.0	11.8	15.4	7.5	10.0	9.0	9.0	2.5	
	StD	22.6	33.4	18.8	22.5	10.6	16.7	18.0	12.4	4.2	
Roof Substrate Damage (%)	Mean	15.0	27.1	12.8	15.0	12.5	12.0	9.5	12.0	1.0	
	StD	22.3	33.9	20.6	22.1	17.7	17.9	17.7	14.4	2.2	
Roof	Mean	27.8	45.7	32.6	21.5	12.5	30.5	15.8	16.0	12.5	
Damage (%)	StD	23.0	33.5	36.4	19.2	17.7	16.7	13.8	18.2	16.4	
Wall	Mean	10.0	23.1	7.9	17.0	0.0	2.5	1.3	10.0	4.5	
Damage (%)	StD	15.9	33.7	13.1	31.2	0.0	4.2	2.5	14.1	7.0	
Wall	Mean	9.8	19.9	10.4	5.7	0.0	1.7	1.8	18.4	3.0	
Damage (%)	StD	16.2	32.6	16.3	15.1	0.0	4.1	2.4	12.3	4.5	
Building	Mean	11.0	25.7	15.7	10.0	5.0	7.4	5.8	18.3	17.4	
Damage (%)	StD	15.6	29.8	17.7	16.1	0.0	4.3	4.3	16.1	16.6	
MWFRS (%)	Mean	12.3	24.6	11.7	17.1	5.0	6.0	5.4	12.4	3.6	
	StD	18.1	30.7	16.4	22.9	7.1	9.6	10.1	12.5	5.1	
Cladding (%)	Mean	21.8	36.8	24.0	16.6	6.3	16.1	8.8	17.2	8.3	
	StD	23.0	30.0	23.7	14.1	8.8	8.6	7.9	14.0	8.0	
Fenestrati on (%)	Mean	9.7	24.2	18.7	3.3	12.5	3.3	0.1	10.3	9.8	
	StD	16.1	34.6	26.0	8.2	17.7	4.4	0.1	14.0	14.4	
Contextual Information											
3s Gust Wind Speed (mph)	Mean	124.7	126.2	127.7	123.4	149.2	138.9	133.5	137.7	137.3	
	StD	12.1	10.7	8.6	14.0	1.1	12.0	11.0	10.7	16.1	
Distance	Mean	9.6	7.1	0.6	2.9	0.0	0.2	0.4	0.8	0.1	
Coast (mi)	StD	18.2	14.0	0.6	4.1	0.0	0.3	0.1	0.9	0.2	
Wind	Mean	1.5	1.5	1.6	1.5	1.3	1.2	1.1	1.8	1.8	
Ratio	StD	0.3	0.3	0.2	0.3	0.0	0.2	0.2	0.3	0.4	

Table 10. Statistical summary of building wind performance for buildings excluded from the Florida Building Code Residential, by major building code era. Colors indicate gradation across rows from lowest (dark green) to highest (red).

Figure 10. Relative distribution of wind damage ratings in pre-2002 (prior to 2001 FBC) and post-2002 (after 2001 FBC) buildings.

Figure 11. Relative distribution of wind damage ratings in pre-2002 (prior to 2001 FBC) and post-2002 (after 2001 FBC) Single-Family Residential buildings.

Figure 12. Distribution of wind damage ratings for all buildings by major era.

Figure 13. Changes in MWFRS, Cladding and Fenestration damage ratios with respect to year built and Florida Building Code editions. Damage ratios exclude any damage caused by storm surge.

Figure 14. Distribution of wind damage ratings for all buildings excluded from using the Florida Building Code Residential, by major era.

4.2.2 Wind Performance of Roof Cover and Wall Cladding Materials

The wind performance of different types of roof cover and wall cladding materials show some differences in performance (Figure 15 and Figure 16). However, a few clarifications are necessary before discussing the results.

- 1) The distinction between pre- and post-FBC relates to the construction year of the building itself, not the installation date of the cladding material.
- 2) Damage ratios are calculated assuming either 100% (upper bound of damage estimate) or 0% (lower bound of failure estimate) failure of the cladding material present on failed portions of the roof or wall MWFRS (roof and wall sheathing/substrate is included in the MWFRS). In other words, if 20% of the roof sheathing was removed, we assume the roof cover damage is equal to 20% to get the upper bound, and 0% to get the lower bound, then add any additional roof cover damage from the remaining portions of the roof.
- 3) Many buildings contain multiple wall cladding materials, and our assessments did not separate out damage ratios for each individual material present; only an overall wall cladding damage ratio was evaluated. As a result, the categories shown in Figure 16 are not mutually exclusive. Each category represents buildings that had the given wall cladding material, but other materials may also have been present and contributed to the damage ratios. A study using our approach but focusing solely on wall cladding

performance by material may result in a more precise estimate of performance differences.

4) Figure 15 and Figure 16 present the individual data points (filled circles, each representing a single building) as well as box plots with the top and bottom horizontal lines indicating the 75th and 25th percentiles respectively, and the middle horizontal line indicating the median of the data. Wall cladding damage is plotted on a square root scale to better visualize data closer to 0. Some materials have medians of 0%.

The data show that roof cover damage was highest in 3-tab shingles on homes constructed prior to the 2002 FBC and in a mixture of less common roof cover methods such as wood shingles. Post-FBC metal roofs and laminate shingle roofs performed better, albeit with 10%-20% of post-FBC metal roofs, and 36%-40% of post-FBC laminate shingle roofs, suffering more than 20% roof cover loss. For wall cladding, no clear differences were observed between pre- and post-FBC buildings. Buildings with vinyl siding were associated with the highest median and 75th percentile damage ratios, and buildings with brick the lowest. It was generally not possible to evaluate the exact wind resistance of the various cladding materials to separate into high wind-rated vs standard systems. Considering all wall cladding materials, 13% of post-FBC buildings experienced the loss of at least 20% of wall cladding.

Figure 15. Roof cover damage ratios in pre- and post-FBC buildings by roof cover type (left) assuming 100% roof cover located on damaged roof substrate is also damaged; (right) assuming 0% of roof cover located on damaged roof substrate is also damaged.

Figure 16. Wall cladding damage ratios in pre- and post-FBC buildings by cladding material; (left) assuming 1000% of wall cladding located on damaged wall substrate is also damaged; (right) assuming 0% of wall cladding located on damaged wall substrate is also damaged.

4.2.3 Wind Performance of Large Doors

Assessments documented any large doors that were present on the building and whether they failed or not, categorizing each as a garage door, roll-up door, sectional door, or other. Roll-up and sectional doors were broadly labeled as commercial doors, while single and double garage doors were labeled as residential. In most cases it was not possible to identify the exact model number or whether a large door was wind rated because of a lack of accessibility to the interior of the building. Overall, the damage rate for large doors was approximately 20%, with failure rates slightly higher in post-FBC doors than pre-FBC doors (Table 11). A few illustrative large opening failures are shown in Figure 17.

	All C	Doors	Commer	cial Doors	Residential Doors		
	Pre-FBC	Post-FBC	Pre-FBC	Post-FBC	Pre-FBC	Post-FBC	
Count	109	177	15	5	94	172	
Damaged	21	40	3	3	18	37	
% Damaged	19%	23%	20%	60% ^[1]	19%	22%	

Table 11. Summary of large door performance in Hurricane Michael.

[1] All three post-FBC commercial buildings with failed doors were sampled because of damage, and therefore the failure rates are likely not representative of the true failure rate.

Figure 17. Illustrative large door failures; (top left) pre-FBC residential building in Mexico Beach area, (top right) post-FBC building in Panama City, (bottom left) pre-FBC commercial building in Panama City, (bottom right) post-FBC commercial building in Panama City.

4.3 Findings Related to Surge Hazards

Kennedy et al. (2020) performed an analysis of surge-induced impacts from Hurricane Michael, using data that overlaps with that described in this study. The study area primarily focused on the Mexico Beach area, with some additional coverage southeast towards Port St. Joe. The majority of structures in the study area were residential and consisted of (1) older single family, at grade homes, (2) multi-family structures (i.e., townhomes), (3) pile-elevated wood-frame single family homes and small businesses; and (d) pile-elevated multifamily residential or commercial construction. The major findings and conclusions from the study related to building performance are summarized below:

- Damage for low-lying properties near the Mexico Beach cost was near-total, irrespective of construction type or age. This damage occurred even in areas designated by FEMA as having minimal flood risk.
- Structures elevated well above the 100 year base flood elevation had increased survival and reduced damage probabilities from waves and surge.
- Distance inland far enough to minimize wave heights reduced damage probabilities.
- No buildings built to minimum required standards for Bay County in FEMA X, AE or VE zones have a realistic probability of survival in a storm similar to Hurricane Michael.

The major conclusion from the study was that the 100 year base flood elevation produces a level of risk that is disproportionate to other hazards (wind, earthquake). Full context of the study and conclusions are discussed in Kennedy et al. (2020), which is provided in Appendix D.
5 TASK 3: RESEARCH OUTCOMES FROM FEMA'S MAT REPORTS

Following Hurricane Michael and the MAT Teams' investigation, FEMA released two important documents; <u>Recovery Advisory 1</u> (FEMA, 2019a) and <u>Recovery Advisory 2</u> (FEMA, 2019b) that outlined best practices for a) retrofitting buildings for wind resistance specifically for critical facilities and b) minimizing wind and water infiltration into residential buildings. Our scope includes determination of the extent that these recommendations are included into the FBC. The scope of work is:

- We will review the recently published documents and identify the differences between the current Building Code and the additional recommendations presented in the Recovery Advisory.
 - We were asked during our March 2020 presentation of our Interim Report to expand our review to the full <u>FEMA P-2077</u>: <u>Mitigation Assessment Team Report</u> <u>- Hurricane Michael</u> (FEMA, 2020) that was published in February 2020.
- Report the findings to the FBC, prioritizing the modifications for code changes for consideration in future codes.

The details here are also pertinent to both residential and some non-residential structures. The recommendations with FEMA P-2077 are directed to a broad cross-section of the construction industry;

"... to design professionals, contractors, building officials, facility managers, floodplain administrators, regulators, emergency managers, building owners and operators, academia, select industries and associations, local officials, planners, FEMA, and other interested stakeholders."

Some recommendations suggest places where building codes should be revised, while some encourages actions such as:

- developing/modifying training on the flood provisions in the FBC and local floodplain management ordinances
- encouraging pre-event evaluation of post-disaster needs
- further evaluation of the performance of concrete pile foundations
- prioritization of building inspections
- researching performance of commonly used ridge vent products
- researching and investigating the appropriate pressure-equalization factors (PEF) for vinyl siding wall cladding systems

- re-evaluating policies, procedures, and requirements for assessments of existing spaces for use as Hurricane Evacuation Centers (HEC)
- re-evaluating Enhanced Hurricane Protection Areas (EHPA) criteria and re-assess safety of existing EHPAs

The following recommendations of the FEM P-2077 directly address the Florida Building Code (FBC): 8a, 8d,15c,17c, 30, the ASCE 7 minimum wind load design standard: 8b, 8e, and the Florida Division of Emergency Management (FDEM): 10b, 11a, 14e, 15b, 17a. These recommendations suggest places where the respective codes, standards and policies should be revised. Further, FEMA P-2077 provides several recommendations for revised current test standards for building materials and products. These are related to ASTM International (ASTM): 6, 24a, 24c and 24d. The complete list of FEMA P-2077 recommendations, Table 6.2, are provided in Appendix C.

5.1 Recovery Advisory 1

This document (FEMA, 2019a) focuses on immediate lessons learned from Hurricane Michael regarding key wind retrofit guidelines for buildings located in hurricane-prone regions. It includes examples of observed ineffective wind retrofit projects found by the FEMA MAT Teams following Hurricane Michael.

Observations showed that

"...before repairing wind-damaged buildings or retrofitting a building to be more windresistant, all building elements should be assessed for vulnerability to high-wind events, even those that were not damaged. If undamaged elements are determined to have significant vulnerabilities, they should be mitigated as part of the repair work to help prevent future damage. Even when retrofitted elements perform well, if other non-retrofitted elements fail during a high-wind event, the whole retrofit project may be ineffective because the building did not achieve the target performance level intended by the retrofit."

To address this, five specific steps to develop a comprehensive plan for executing the needed retrofits and improve wind resistance of critical facilities and residential buildings has been derived. Figure 18 outlines the five-step process from Recovery Advisory 1 (RA 1) Report (FEMA, 2019a) as a recommended approach for consideration.

5.2 Recovery Advisory 2

This document (FEMA, 2019b) focuses on immediate lessons learned from Hurricane Michael regarding wind and water infiltration damage to existing residential buildings. Presented in this report are a series of best practices for roof coverings, underlayment, vents, exterior wall coverings, soffits, glazed openings and doors. The target audience includes building owners, operators, and managers; design professionals; building officials; contractors; and municipal building and planning officials. Table 12 summarizes the Recovery Advisory 2 (RA 2) Key Practices and compares those to the FBC-Building/Residential, 6th Edition (2017) requirements. Italic bold font in "Commentary" designates differences between RA 2 Key Practices and the FBC.

We note that all Key Practices of the RA 2 are addressed in the <u>Report No 04-19</u> (Prevatt, 2019), titled "Investigation of Optional Enhanced Construction Techniques for the Wind, Flood, and Storm Surge Provisions of the Florida Building Code," that was submitted to Florida Department of Business and Professional Regulation on December 27, 2019. This document provides enhanced construction techniques for strengthening the wind resistance, storm surge and flood resistance and water intrusion resistance provisions of the FBC based primarily on existing guidance and best practices including presented in RA 2 Report. Both FBC-Building/Residential, 6th and 7th Editions (2017 and 2020, respectively) were considered.

(THIS PAGE PURPOSELY LEFT BLANK)

Scope	Key Points	Recovery Advisory 2 (RA2) Key Practice	FBC B/R, 6 th Edition (2017) Requirement	Commentary
Wind Performance of Asphalt Shingles	Installation • Shingles at rakes, eaves, hips, ridges and fastener location should be paid attention. B 1507.2.7.1: As shall be classifi accordance wit ASTM D7158 of the classifier accordance with ASTM D7158 of the classifier accordance withe classifier accordance with ASTM D7158 of the classifier accorda		 B1507.2.7.1: Asphalt shingles shall be classified in accordance with ASTM D3161, ASTM D7158 or TAS 107. B 1507.2.3: Asphalt shingles shall be fastened to solidly sheathed decks. B 1507.2.4: Asphalt shingles shall only be used on certain roof slopes. 	 FBC require same label and testing method as FEMA RA2 Report. RA2 Report have addition requirement for shingles at rakes, eaves, hips.
Wind Performance of Concrete and Clay Roof Tiles	Design Installation	 Determine appropriate design wind loads using ASCE 7-16 Installation should follow FRSA/TRI, (Florida High Wind Concrete and Clay Roof Tile Installation Manual). For improved performance, use enhanced installation techniques mentioned in FEMA P-499, 2010, No 7.4 	 B1507.3.2: Installation in accordance with FRSA/TRI (Florida High Wind Concrete and Clay Roof Tile Installation Manual). B1503.3.1: Concrete and clay tile shall be installed only over solid sheathing. 	Both RA2 Report and FBC require that concrete and clay roof tiles installation should follow FRSA/TRI.
Wind Performance of Metal Roof Systems	Testing and labeling Installation	Metal panel roof systems are tested based on ASTM E1592(2017b) For improved performance, use enhanced installation techniques for design and	B1507.4.3: Aluminum metal roof test should follow ASTM B209	The FBC did not mention the ASTM E1592(2017b) test standard. The RA2 Report provides enhanced installation

Table 12. Comparison of Recovery Advisory 2 Key Practices vs. FBC Building/Residential, 6th Edition (20217) Requirement

Scope	Key Points	Recovery Advisory 2 (RA2) Key Practice	FBC B/R, 6 th Edition (2017) Requirement	Commentary
		installation mentioned in FEMA P-499, 2010, No 7.6	B1507.4.3: Cold-rolled copper roof test follow ASTM B370 B1507.4.1: Metal roof panel roof shall be applied to a solid or closely fitted deck B1507.4.2: Metal roof panels shall have Minimum slopes	techniques to improve performance.
Wind Performance of Ridge Vents and Off-Ridge Vents	Testing and labeling Installation	 Ridge vents were tested for resistance to wind and wind-driven rain based Attach roof ventilation products properly Ensure fasteners for ridge vents are of a sufficient length to penetrate the roof sheathing below. 	TAS-100: Test procedure for the water infiltration resistance of a soffit ventilation.	The FBC provide specific test procedure for water penetration of ridge vents. <i>The RA2 Report provides</i> <i>fastener requirement.</i>
Wind Performance of Vinyl Siding	Testing and labeling	 Use Vinyl siding product comply with ASTM D3679(2017). Ensure selected siding wind pressure rating that exceeds the local required design wind pressure. Double or curled nail hem vinyl siding has the highest design wind pressure rating. 	B1404.9. Vinyl siding shall be certified and labeled based on ASTM D3679.B1405.14.1. Siding and accessories shall be installed in accordance with approved manufacturer's instructions.	The RA2 Report recommends using double or curled bail hem vinyl siding in high velocity region.

Scope	Key Points	Recovery Advisory 2 (RA2) Key Practice	FBC B/R, 6 th Edition (2017) Requirement	Commentary
	Installation	 Install vinyl siding over wood structural panel sheathing. Use utility trim at top of walls and under windows where the nail hem has to be cut. Use proper starter strips at the first course of the siding 		
Wind Performance of Fiber-Cement Siding	Testing and labeling Installation	Selected fiber cement siding is designed meet the design wind pressures in ASCE 7- 16. Face-nailing of fiber-cement siding is recommended in hurricane-prone regions.	 B1405.16: Fiber-Cement Siding should both satisfy water-resistive barrier requirements and manufacturer's instructions. B1405.16: Fastener shall be corrosion-resistant and be long enough to penetrate the studs at least 1 inch (25 mm). 	The RA2 Report recommends using face-nailing of fiber- cement siding in hurricane- prone regions.
Wind Performance of Soffits	Design	Use adjacent walls wind load to design soffits.	R703.11.1.4: Soffits should have same wind load resistant as wall.	FBC have same requirement for soffit wind load design.
	resting	wind and wind-driven rain.	R703.11.1.4: Vinyl soffit panels shall be fastened to nailing	FBC did not nave wind- driven testing requirement for soffit.
	Installation • Secure fascia covers adequately. s • Both end vinyl soffits panel are fastened to framing. s		strip, fascia.	 FBC did not limit the unsupported span of soffit and did not have

Scope	Key Points	Recovery Advisory 2 (RA2) Key Practice	FBC B/R, 6 th Edition (2017) Requirement	Commentary	
		Limit unsupported span of soffit panels to 12 in.		requirement for fascia strength.	
Wind performance of Glazed Openings	Design Glazed openings in wind-borne debris R3 regions must be impact-resistant or be op protected with shutter. in sh sh		R301.2.1.2: Exterior glazed openings in buildings located in windborne debris regions shall be protected from	The RA2 Report recommends some impact-resistant products.	
	Testing and labeling	Use recommended impact-resistant products mentioned in FEMA P-499, 2010, No. 6.2.	windborne debris.		
Water Infiltration of Glazed Openings and Doors	Testing and labeling	Product labels and tests are based on AAMA/WDMA/CSA 101/I.S.2/A440.	B2410-2413: Windows and glazing requirement in high-velocity hurricane zone.	Both RA 2 Report and FBC require using AAMA/WDMA/CSA 101/I.S.2/A440 test standard to test fenestration water penetration.	
	Installation	Use recommended installation and flashing methods for windows and doors mentioned in FEMA P-499, 2010, No.6.1.			

5.3 FEMA P-2077 Recommendations

Table 13 below includes the specific recommendations that are pertinent to FBC, FDEM and ASCE 7 wind load provisions respectively. These are extracted from the complete list of 69 recommendations of FEMA P-2077 Report (FEMA, 2020) that are provided for convenience in Appendix C.

Several recommendations have already been addressed in the FBC 6th and 7th editions.

The recently published Draft of the FBC-Building, 7th Edition (2020) incorporated recommendation FL-14e to Section 1507, introducing new subsections 1507.1.1.1-1507.1.1.3 to address recommendations of the use of underlayment systems that additionally function as a sealed roof deck (secondary roof sealing strategy proposed by IBHS).

Recommendation FL-17c, that suggests revising the FBC and FBCR to require labeling of vinyl siding, can be found in both FBC 6th (2017) and 7th (2020) Editions (FBC-Residential: Chapter 7, Section R703, R703.11; FBC-Building: Chapter 14, Section 1404, 1404.9).

Three of the 26 recommendations selected and presented in Table 13 recommendations marked with "*" (FL-14e, FL-16 and FL-17a) refer to <u>Recovery Advisory 2</u> (FEMA, 2019b).

Table 13. 26 of 69 FEMA P-2077 recommendations addressed to FBC, FDEM, ASCE,
ASTM and other related Action Offices that can be taken into consideration by FBC
(extracted from Table 6-2, FEMA P-2077, see Appx. C)

Action Office / Recovery Support Function (RSF)	FEMA P-2077 Recommendation
Addressed to FBC:	
FBC, CPCB, Housing	FL-8a. The FBC should treat all areas within 1 mile inland from the entire Florida coastline as a WBDR.
IBC/IRC/FBC proponents, CPCB, Housing	FL-8d. The IBC/IRC/FBC should be updated where needed to ensure glazed window, skylight, door, and shutter assemblies have a permanent label that provides traceability to the manufacturer and product.
FBC, CPCB, Housing	FL-15c. The FBCR should be revised to require soffit panels to be labeled to provide traceability to the manufacturer and product.
FBC, CPCB, Housing	FL-17c. The FBC and FBCR should be revised to require vinyl siding be labeled to provide traceability to the manufacturer and product.
FBC, CPCB, Health and Social Services	FL-30. The FBC should provide more specific criteria with restrictions on how, when, and where roof aggregate can be used.

Action Office / Recovery Support Function (RSF)	FEMA P-2077 Recommendation				
Addressed to FDEM	1:				
FDEM, CPCB	FL-1a. FDEM should consider developing/modifying training on the flood provisions in the FBC and local floodplain management ordinances.				
FDEM, CPCB, Economic, Health and Social Services, Housing, Infrastructure, Natural and Cultural Resources	FL-5b. FDEM should continue to encourage pre-event evaluation of post- disaster needs and inform appropriate parties about assessing resources through SMAA and EMAC.				
FEMA, FDEM, CPCB	FL-10b. FEMA and FDEM should consider providing a code change proposal to the International Codes requiring contractors and/or manufacturers to add length labels or incremental depth markers on vertical piles.				
FEMA, FDEM, CPCB, Infrastructure	FL-11a. FEMA and FDEM should consider submitting a code change proposal to the FBC, applying ASCE 24 Flood Design Class 4 requirements outside the SFHA in moderate flood hazard areas (shaded Zone X) and to consider flood risk for minimal flood hazard areas (unshaded Zone X).				
FEMA, FDEM, CPCB, Housing	FL-14e*. FEMA and FDEM should consider supporting current code change proposals to the 7th Edition FBC that provide for improved underlayment systems.				
FEMA, FDEM, CPCB, Housing	FL-15b. FEMA and FDEM should consider submitting a code change proposal to the FBC requiring soffit inspections, and jurisdictions should prioritize performing soffit inspections.				
FEMA, FDEM, CPCB, Housing	FL-17a*. FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections.				
FDEM, CPCB	FL-19c. FDEM should consider delivering training on FEMA P-361 safe room design, construction, and operations and maintenance.				
The State of Florida and FDEM, CPCB, Health and Social Services	FL-21a. The State of Florida and FDEM should consider re-evaluating their policies, procedures, and requirements for assessments of existing spaces for use as HES.				
The State of Florida and FDEM, CPCB, Health and Social Services	FL-21b. The State of Florida and FDEM should consider re-evaluating EHPA criteria and re-assess safety of existing EHPAs, particularly those designed prior to the 6 th Edition FBC (2017).				
Addressed to ASCE					
ASCE 7 Wind Load Task Committee, CPCB, Housing	FL-8b. The ASCE 7 Wind Load Task Committee should revise ASCE 7 to lower the basic wind speed trigger in ASCE 7 for requiring glazing to be protected on Risk Category IV buildings in the hurricane-prone region.				

Action Office / Recovery Support Function (RSF)	FEMA P-2077 Recommendation		
ASCE 7 Wind Load Subcommittee, CPCB	FL-8e. The ASCE 7 Wind Load Subcommittee should consider developing commentary on vestibule wind loads.		
Addressed to ASTM	1:		
FEMA, AAMA/WDMA/CSA, IBHS, ASTM, ICC, CPCB, Housing	FL-6. FEMA should work with AAMA/WDMA/CSA, IBHS, ASTM, ICC®, and other select industry partners to incorporate more comprehensive water intrusion testing requirements that improve overall performance into testing standards.		
ASTM E1886 Task Committee, CPCB	FL-24a. The task committee for ASTM E1886 should consider revising the standard to include the evaluation of the potential for the shutter assembly to unlatch during a storm.		
ASTM E1886 Task Committee, CPCB	FL-24c. The task committee for ASTM E1886 should add corrosion criteria to the standard to help enable shutters to perform as intended over their useful life.		
ASTM E1886 Task Committee, CPCB	FL-24d. The task committee for ASTM E1886 should evaluate the current perpendicular angle specifications for impacting a shutter during testing for its adequacy.		
Other related recom	mendations that can be taken into consideration by FBC:		
Code enforcement authorities, CPCB, Housing	FL-14a. Code enforcement authorities having jurisdiction across Florida should make roof covering and underlayment inspections a priority.		
Wind engineering research community, CPCB, Housing	FL-7. The wind engineering research community should perform a revised analysis of the ASCE 7 basic wind speed maps for the Florida Panhandle region to include data from Hurricane Michael.		
Academia and pile industry groups, CPCB	FL-10a. Industry groups, interested stakeholders, and/or academia should further evaluate the performance of the concrete pile foundations that failed during Hurricane Michael to determine why they failed.		
Ridge vent industry groups and academia, CPCB, Economic, Housing	FL-16*. Industry groups and academia should perform research on commonly used ridge vent products to better determine the causes of ridge vent failure and develop solutions.		
Vinyl siding manufacturers, insurance organizations, CPCB, Housing	FL-17b. Vinyl siding manufacturers, insurance organizations, and other stakeholders should continue research and investigations of the appropriate PEF for vinyl siding.		

Abbreviations used in Table 13:

- AAMA = American Architectural Manufacturers Association
- ASCE = American Society of Civil Engineers
- ASTM = ASTM International
- CPCB = Community Planning and Capacity Building
- CSA = Canadian Standards Association
- EHPA = Enhanced Hurricane Protection Area
- EMAC = Emergency Management Assistance Compact
- FBC = Florida Building Code
- FBCR = Florida Building Code, Residential
- FDEM = Florida Division of Emergency Management
- FEMA = Federal Emergency Management Agency
- HES = Hurricane Evacuation Shelter
- IBHS = Insurance Institute for Business & Home Safety
- IBC = International Building Code
- ICC = International Code Council
- IRC = International Residential Code
- MAT = Mitigation Assessment Team
- PEF = pressure equalization factor
- SFHA = Special Flood Hazard Area
- SMAA = Statewide Mutual Aid Agreement
- WBDR = wind-borne debris region
- WDMA = Window and Door Manufacturers Association

6 **REFERENCES**

- ASCE (2017). "Minimum Design Loads for Buildings and Other Structures." American Society of Civil Engineers, Reston, VA.
- Balderrama, J. A., Masters, F. J., Gurley, K. R., Prevatt, D. O., Aponte-Bermúdez, L. D., Reinhold, T. A., Pinelli, J. P., Subramanian, C. S., Schiff, S. D., and Chowdhury, A. G. (2011). "The Florida Coastal Monitoring Program (FCMP): A review." *Journal of Wind Engineering and Industrial Aerodynamics*, 99(9), 979-995.
- Beven, J., Berg, R., and Hagen, A. (2019). "National Hurricane Center Tropical Cyclone Report: Hurricane Michael."Miami, FL.
- Kennedy, A., Copp, A., Florence, M., Gradel, A., Gurley, K., Janssen, M., Kaihatu, J., Krafft, D., Lynett, P., Owensby, M., Pinelli, J. P., Prevatt, D., Rogers, S., Roueche, D., and Silver, Z. (2020). "Hurricane Michael (2018) in the Area of Mexico Beach, Florida." *Journal of Waterway, Port, Coastal, and Ocean Engineering*
- Line, P., and Coulbourne, W. (2012). "ASCE 7-10 Wind Provisions and Effects on Wood Design and Construction." *Structure Magazine*, January.
- Prevatt, D. O., and Roueche, D. B. (2019). "Survey and Investigation of Buildings Damaged by Category-III, IV & V Hurricanes in FY 2018-2019 - Hurricane Michael." Florida Department of Business and Professional Regulation, Tallahassee, Florida.
- Roueche, D., Kijewski-Correa, T., Mosalam, K., Prevatt, D. O., and Robertson, I. (2019). "Virtual Assessment Structural Team (VAST) Handbook: Data Enrichment and Quality Control (DE/QC) for US Windstorms." Structural Extreme Events Reconnaissance Network, steer.network.
- Vickery Peter, J., Liu, F., and Lavelle, F. M. (2018). "Development of Wind Speed Contours for Hurricane Michael." NIST / ARA, DesignSafe Recon Portal.
- Vickery, P. J., Liu, F., and Lavelle, F. M. (2017). "Development of Wind Speed Contours for Hurricane Irma." Applied Research Associates.
- Vickery, P. J., Skerlj, P. F., Steckley, A. C., and Twisdale, L. A. (2000). "Hurricane Wind Field Model for Use in Hurricane Simulations." *Journal of Structural Engineering*, 126(10), 1203-1221.
- FEMA. (2019a). Successfully Retrofitting Buildings for Wind Resistance. Hurricane Michael in Florida Recovery Advisory 1. Retrieved May 1, 2019, from https://www.fema.gov/media-library/assets/documents/158123
- FEMA. (2019b). Best Practices for Minimizing Wind and Water Infiltration Damage. Hurricane Michael in Florida Recovery Advisoty 2. Retrieved June 2019, from https://www.fema.gov/media-library/assets/ documents/180337
- FEMA. (2020). Building Performance Observations, Recommendations, and Technical Guidance. Mitigation Assessment Team report. Hurricane Michael in Florida. FEMA P-2077. Retrieved from https://www.fema.gov/media-library/assets/documents/186057
- Prevatt, D. O. (2019). Investigation of Optional Enhanced Construction Techniques for the Wind, Flood, and Storm Surge Provisions of the Florida Building Code. Gainesville, FL: University of Florida. Retrieved December 27, 2019, from http://bit.ly/ufWIND-01-20

APPENDIX A: MODULAR HOME DATABASE

The following table summarizes the modular and site-built home datasets from Hurricanes Irma (2017) and Michael (2018) used to perform an evaluation of the relative wind damage risk between these two building classes.

Record ID	Latitude	Longitude	Year Built	Number of Stories	Wind Damage Rating	Est. Wind Speed (mph)
a17b24a2-	24.667503	-81.363726	2008	1	2	114
bf5b-433c-						
b001-						
7a4a94647b25						
454bbca1-	24.656112	-81.405712	2006	1	3	117
de2e-4dd0-						
8590-						
f3ed2887ca2f						
7a62025e-	24.654928	-81.406002	1995	1	3	117
e719-4a4c-						
9033-						
f8447a022689						
fb11f220-	24.670789	-81.346126	2003	1	1	117
b792-44fe-						
a5d2-						
d7dfce514d6e						
bb2dae2a-	24.671695	-81.339281	2004	2	2	117
e217-4c94-						
a819-						
634b377a9836						
8a687902-	24.687328	-81.397769	2006	1	2	117
0fa7-4b43-						
926e-						
9e190e329094						
01bd7e22-	24.690018	-81.398649	2000	1	2	117
b78d-49be-						
b3ff-						
d9bdfbb686ac						
32c1b935-	24.677912	-81.394068	2006	1	2	117
d086-4d5d-						
8f23-						
2bd154ee20ec						
cacd978c-	24.67794	-81.392963	2006	1	1	117
77f5-43b2-						
a5fd-						
9b2b863eb387						
33e31a9b-	24.689699	-81.398169	2000	1	2	117
935f-41f3-						

Table A1. Sample of modular homes impacted by Hurricane Irma (2017).

Record ID	Latitude	Longitude	Year Built	Number of Stories	Wind Damage Rating	Est. Wind Speed (mph)
b6b4-						
c0fe9950cd63						
51628a86-	24.688449	-81.398368	2006	1	2	117
03f0-41fc-						
b013-						
8705964c31e9						
6235bee2-	24.679144	-81.392485	2006	1	2	117
a740-4f47-						
D/00-						
720602300016	24 672478	81 345008	2005	1	2	117
fc86-4a85-	24.072470	-01.040990	2003		2	117
998d-						
0be3b3d9fe40						
9ad76948-	24.689533	-81.397747	2006	1	2	117
5b0c-4fbb-						
ade5-						
3c0bec5aa8b2						
c87859d1-	24.688432	-81.397913	2007	1	2	117
3708-4b64-						
a3a1-						
ec27ec0d2654						
d8c6d213-	24.678578	-81.393613	2004	1	1	117
1b31-486c-						
bddf-						
1f4930df547d					-	
83d51d77-	24.624706	-81.593166	2011	1	3	112
2535-47de-						
4942- 49f987296998						
9e64a15f-	24 567435	-81 744917	2007	2	2	109
58ab-4b72-	24.001400	01.14011	2001	L	2	100
b9d2-						
6453ce9a0e6f						
4f4e7107-	24.72593	-81.396403	1993	1	1	116
30ab-436b-						
8e15-						
b29505cf87b8						
558619af-	24.678866	-81.389673	1996	1	2	117
0dcf-4e86-						
a388-						
188559c60eaa						
1c671342-	24.719417	-81.056247	2001	1	2	123
fd75-4245-						
bb2e-						
45190d0d75b7						

Record ID	Latitude	Longitude	Year Built	Number of Stories	Wind Damage Rating	Est. Wind Speed (mph)
4d5f3fed-	24.665816	-81.409096	1998	1	1	117
bce5-4b62-						
bdb9-						
e345de291200						
b886e99d-	24.670214	-81.528307	1996	2	3	111
720d-434b-						
9404-						
7f877b20c6d0						

Table A2. Sample of site-built homes impacted by Hurricane Irma (2017).

Record ID	Latitude	Longitude	Year Built	Number of Stories	Wind Damage Rating	Est. Wind Speed (mph)
d7a9dccc-	25.923327	-81.643774	2008	1	0	110
c5a7-4e6a-						
94a0-						
37bc376c30d9						
9cea39b8-	24.655576	-81.38537	1997	2	2	117
23c9-489c-						
90c9-						
373dddfd5328						
da865048-	24.655569	-81.385183	1998	1	2	117
cdeb-4ee4-						
8dde-						
fdc5089f5f56						
7acb1c1a-	24.658757	-81.386095	2008	2	3	117
13ec-4308-						
a926-						
e5132ce6954b						
4a69021f-	24.656541	-81.406744	2015	1	3	117
6544-44c1-						
96a6-						
682b2e7ef296						
d0212162-	24.65532	-81.406439	2012	2	1	117
be42-4cc9-						
b82a-						
38e59e5de415						
1fabc330-	24.655725	-81.405125	2010	1	1	117
00b2-453e-						
8290-						
65270d6c1897						
7ee2fc09-	24.654906	-81.40671	1995	1	2	117
7277-450f-						
a044-						
fd8dec8fa8b7						
8038b934-	24.672652	-81.340471	2006	2	2	117
e08b-44fb-						

Record ID	Latitude	Longitude	Year Built	Number of Stories	Wind Damage	Est. Wind
805d-				Stories	Rating	
a62115804f31						
2293a2cd-	24.689619	-81.398899	2011	1	1	117
ee8d-4b72-						
a204-						
03a32230ed31						
73d1c9aa-	24.721549	-81.05154	1997	1	1	123
e581-4758-						
a353-						
e0d595640f04						
53130e37-	24.719515	-81.055558	1997	1	3	123
f266-4242-						
b6cb-						
b4394263277d						
fe7ecf1f-f8fe-	24.667069	-81.409737	2017	1	0	117
48d4-8dac-						
453dd82653be						
a7181938-	24.625311	-81.593512	2002	1	1	112
0896-4ddc-						
9d60-						
d77289f20520						
5de49a9d-	24.600148	-81.662748	2002	1	1	110
583b-49c6-						
b446-						
2fd9e1052531						
a76fe876-	24.677443	-81.389194	2016	1	1	117
c9f8-452d-						
8e9a-						
820/10830129	04.070007	04 500 444	0007		1	
9906aba8-	24.670367	-81.528441	2007	1	1	111
eo22-4e00-						
f520d9442a9a						
031d0d14	24 660803	81 405357	2000	1	3	117
8785 4573	24.000893	-81.403357	2000	1	5	117
0164-4373-						
9104- 2585b72941c2						
7124f855-	24 661283	-81 405504	2016	1	1	117
hf5a-42h5-	24.001200	01.400004	2010			
a463-						
fd17e084c853						
38f3092d-	24,759729	-80.960521	2007	1	2	118
04cd-4aa4-					-	
af71-						

Record ID	Latitude	Longitude	Year Built	Number of Stories	Wind Damage Rating	Est. Wind Speed (mph)
545a4b4f-	29.952198	-85.420476	2004	2	1	150
66ac-4a75-						
8dbf-						
ba8d97878a0f						
6f03b824-	29.924848	-85.384097	2016	1	1	149
85ef-467e-						
be47-						
252a77b169fa						
9e65cb50-	30.271264	-85.532722	2007	1	2	128
81fa-444b-						
869f-						
c3bcc39ac433						
8f36c348-ffb5-	30.251066	-85.490213	2006	1	1	132
4921-a58e-						
463d9fcbd88a						
2f03d0ef-2fd8-	30.153952	-85.571730	2007	1	2	133
418c-95d8-						
ef61527f000d						
d1ed8ef5-	30.206974	-85.602105	2006	1	4	128
8fca-4d71-						
9f0b-						
421af4070b93						
ad0845ee-	30.207215	-85.601984	2006	1	4	128
16e4-4498-						
9e6d-						
f36940848441						
3aa70b6e-	30.207945	-85.602198	2006	1	2	128
dc61-4ce4-						
ac41-						
fbca85760c3b						
58aa147f-	30.207516	-85.602988	2007	1	4	128
4f59-44a8-						
b049-						
31ef0e0794de						
18276e14-	30.196401	-85.600051	2008	2	3	128
a486-46f8-						
8268-						
2dd799076f40						
1f2898a2-	30.196121	-85.600049	2008	2	3	128
b686-47e6-						
9399-						
b9beda1807fa						
f01cbd96-	30.195846	-85.600050	2008	2	3	128
a6bc-4867-						

Table A3. Sample of modular homes impacted by Hurricane Michael (2018).

Record ID	Latitude	Longitude	Year Built	Number of Stories	Wind Damage Rating	Est. Wind Speed (mph)
8b1e-						
38fe5a24de5b						
16d600e9-	30.171467	-85.605306	2008	1	1	130
8098-4bd6-						
af9c-						
66121ebc2a7f						
29462616-	30.146950	-85.624413	2007	1	2	131
205e-4329-						
8d3a-						
b06fa5fe440b						
dc48d264-	30.146963	-85.624655	2006	1	1	131
ec2f-405f-						
8033-						
538380008490	20 400540	05.005420	0007	1	1	400
CD98764e-	30.180519	-85.695436	2007	1	1	126
868a-402a-						
0010-						
2245181b	20 160764	85 768363	2007	1	0	100
5fc6-4ce8-	30.109704	-65.766363	2007	1	0	122
a484-						
2fe9b4efef86						
e3d743da-	30 278555	-85 960801	2007	2	0	93
3e7e-4fd8-	00.210000	00.00001	2001	-	Ũ	
b295-						
6b3d52f2a043						
2cd71cd6-	30.259323	-85.960674	2006	1	0	94
ecb4-43ad-						
99db-						
5f7b54723e92						
e9c95bc1-	30.246850	-85.917383	2009	2	0	100
9ca1-4f65-						
827c-						
4d05d15075c2						
9a5763d9-	30.246293	-85.917293	2008	1	0	100
aedc-4ea3-						
97be-						
cc2aff2fb4b5						
3017664c-	30.162016	-85.634521	2019	1	2	130
bd5a-48d1-						
90dc-						
ff71205a33eb						
c4cd8201-	30.162522	-85.630584	2006	1	2	130
fe35-4cb5-						
b75e-						
adc5163cfe50						

Record ID	Latitude	Longitude	Year Built	Number of	Wind Damage	Est. Wind
81060003-	30.172954	-85.642454	2007	1	2	129
f115-4eda-						
9f89-						
eb221393b2f6						
346dfc79-	30.169494	-85.657345	2007	1	3	129
add1-40d4-						
aa05-						
a4f32cfc0331		05.05.1700	0007			100
e12f64dd-	30.164839	-85.654789	2007	1	2	129
302a-4800- 9132-						
e535b8ff499a						
8c69f45e-	30.163577	-85.662938	2007	1	2	129
aca2-4af1-						
a7c7-						
684216ae0ad5						
21c4ba7b-	30.246495	-85.916930	2008	1	0	100
8833-480c-						
b35e-						
f836b613a762						
801214c5-	30.246857	-85.916695	2008	1	0	100
ed44-4/dc-						
8200-						
c8482c96-	30 245200	-85 917324	2008	2	0	100
c50b-49c2-	00.240200	00.017024	2000	L	Ũ	100
ab3b-						
2bc6d69927e8						
fdaa0e54-	29.836253	-85.310785	2003	1	1	129
6b43-4687-						
bb65-						
e265012455a8						
274a6fbf-	29.898903	-85.359132	2002	1	1	144
a2d0-496b-						
ba4c-						
a18cb2111ae1	20.760040	95 097060	2006	1	0	110
29090030- 1025-4448-	29.760940	-05.207300	2006	1	0	110
be6e-						
b3419e38be29						
e35a61a0-	29.908823	-85.367606	2012	1	3	146
b765-4936-						
8999-						
6f0b77bf8fb0						
9d28457e-	30.089487	-85.192586	1999	1	0	137
51b5-47ac-						

Record ID	Latitude	Longitude	Year Built	Number of Stories	Wind Damage Rating	Est. Wind Speed (mph)
9722-					y	
bc9b08ee823a						
d8f15b9d-	30.131874	-85.198955	2009	1	0	140
28cf-4748-						
afd5-						
3742b6aa5d08						
54ec12d9-	30.107784	-85.193467	1999	1	1	138
ca6c-4e0e-						
ac1d-						
957d59958ba6						
596b753e-	29.923986	-85.381912	2007	1	2	149
560d-4ffe-						
83161006fa80	20.000740	05 400074	2005	1		400
ceec5d9D-	30.096748	-85.183274	2005	1	2	136
0460						
9400- 24fo8030f808						
600048bd	20 110//5	85 216555	2012	1	1	140
6f81_4184_	30.110445	-65.210555	2012	1	1	140
96ed-						
2d4ce7409900						
019c7a63-	29 903463	-85 357062	2013	1	2	144
c793-4a8f-						
add3-						
8f0438d0506b						
3180aa8b-	29.837162	-85.312542	2008	1	0	130
7018-47d0-						
817d-						
532e58b4ee1f						
b6a344d9-	29.920281	-85.380898	1999	1	2	148
e2d2-4dc4-						
b606-						
ccd8ea718739						
df44b445-	29.920095	-85.381120	2010	1	2	148
c1bd-4a43-						
912b-						
90b65853695a						
4300456e-	29.920607	-85.381989	1990	1	2	149
d242-434c-						
9fc6-						
e8c8b9797611						
98a073e2-	29.895730	-85.353250	2008	1	0	143
706d-4782-						
b00d-						
44caea66eab1						

Record ID	Latitude	Longitude	Year Built	Number of Stories	Wind Damage Rating	Est. Wind Speed (mph)
7f17b891-	29.895717	-85.354068	2008	1	0	143
799a-4265-						
b74c-						
0ed765ce3699						
4dfe4cee-	29.904140	-85.363930	2011	1	0	145
88f5-4353-						
9714-						
d12e285f81d8						
1d5bd657-	30.103160	-85.197474	2005	1	2	139
287e-4e3f-						
91eb-						
e6bfcdbf8535						
f7f7320b-	29.689947	-85.372675	2008	2	2	126
c823-437a-						
8abc-						
2ec7e55a5fc5						

Table A4. Sample of site-built homes impacted by Hurricane Michael (2018).

Record ID	Latitude	Longitude	Year Built	Number of Stories	Wind Damage	Est. Wind
faf302ab-	30.282409	-85.631676	2010	1	2	122
5633-416a-						
8ec7-						
6418cb471cf4						
5c33b8e8-	30.285373	-85.630896	2014	1	1	122
2cb2-468d-						
adda-						
fbc2717cdb52						
253a5653-	29.927386	-85.389041	1996	1	3	150
1a75-4276-						
98e5-						
180c9bd1f265						
de36a0c9-	30.181399	-85.618512	2006	1	2	129
5060-45c6-						
afd4-						
939111c3d150						
f62d80e0-	30.181443	-85.620728	1998	1	1	129
9d45-478c-						
a730-						
5262a1ffc667						
2947e3aa-	30.181911	-85.621214	1998	1	1	129
5d6e-4178-						
9617-						
2a4807f5a542						
0bcada42-	30.182333	-85.621599	2006	1	2	129
cc48-4889-						

Record ID	Latitude	Longitude	Year Built	Number of Stories	Wind Damage Rating	Est. Wind Speed (mph)
a497-					j	
b3f757b308e0						
fbb468b0-	29.934998	-85.399388	2017	2	2	150
9879-4975-						
93e9-						
d60ec90ddf78						
6a36d8f3-	30.180913	-85.618740	2008	1	2	129
5f28-4a22-						
b0e0-						
6086249f981e						
cbf50cf1-a8c7-	29.915987	-85.375957	2017	1	1	147
47b5-9ac8-						
936d65ec2132						
c8cc248f-32fe-	30.180628	-85.617033	2007	1	1	129
4192-9766-						
b6ea95747b94	00.400000	05.047704				100
8a2845at-	30.180963	-85.617731	2006	1	1	129
oea0-4555-						
0067c10f827c						
f1d7da45	30 181815	-85 621557	1008	1	2	120
68fc-4578-	30.101013	-03.021337	1990		2	123
bb17-						
7d7faf62d574						
21f9ff2c-f187-	30.207534	-85.599258	2012	1	3	128
4766-9802-		00000200			·	
f2faa52228d7						
f67c6bb6-	30.207037	-85.600242	2012	1	1	128
d8ed-4b6a-						
9710-						
3d8a4f44c18d						
5f6dd132-	30.180506	-85.617804	2006	1	1	129
4ba2-4746-						
b0ee-						
8d0d4ae78d40						
d42ff787-	30.181358	-85.619811	2006	1	2	129
429c-4546-						
9234-						
4d82d057daa5						
86686b3a-	30.137349	-85.566346	2007	2	1	134
1faf-4d7b-8fef-						
34e9fe8a4f64						
c2243783-	30.180817	-85.618371	2006	1	1	129
9968-4069-						
8edb-						
337a4b2a1929						

Record ID	Latitude	Longitude	Year Built	Number of	Wind Damage	Est. Wind
c1a1e094-	30.208323	-85.640254	2002	1 Stories	0 Rating	Speed (mph) 126
f72f-4643-						
bfd7-						
3ed81b135960						
33b80641-	29.939494	-85.397271	2004	1	2	150
f4f7-4946-					_	
9d82-						
3e07eb790d19						
70d7f4fc-09f7-	29.941526	-85.395056	2008	1	1	150
48a3-9da6-						
f235ae46a4dc						
0d525f49-	29 940397	-85 395132	1998	1	1	150
bf9a-4295-		00.000.02				
8103-						
784ac46f219b						
023751a8-	29 914291	-85 375806	1998	2	1	147
a3af-42c1-	20.011201	00.070000	1000	-		
b6b1-						
3b71e5423637						
12712ead-	29 914693	-85 376987	1007	1	1	147
db5b-4db6-	20.014000	00.070007	1007		•	177
8eed-						
e0c0ce6a3bd2						
5b4ad3b6-	29 916248	-85 373617	1996	2	2	147
01cf-4145-	20.010240	-00.070017	1000	2	2	177
b578-						
a43af2574007						
5e73bb05-	29 913199	-85 373052	1001	2	3	147
ddc3-4f4c-	20.010100	-00.07 0002	1001	2	5	177
8172-						
7f0560d303ea						
30070b11	20.012834	95 373315	1000	1	2	147
Scc70b11-	29.912034	-00.070010	1999	1	2	147
3001-4000-						
c1c619f6d470						
01613070	20.840754	85 315528	2007	1	1	121
d0ab 40a2	29.040754	-03.313320	2007	1	1	131
0980-4902- 8516						
0010- 4bf422f08a2a						
401422190820	20.901561	95 207072	1007	1	2	102
20000024-	29.001001	-03.29/0/3	1997		2	123
8300-44e0-						
/3e28e18a976	00.054600	05.400000				450
/02c9e55-	29.951929	-85.426601	2018	2	1	150
284d-4687-						
8dd1-						
b07caeb8b7d5						

Record ID	Latitude	Longitude	Year Built	Number of	Wind Damage	Est. Wind
f3597aba-	30.178304	-85.619280	2017	Stories	Rating	129
f108-4b8c-						
acb3-						
9a4255d4609e						
feb85ff7_f6a6_	30 204914	-85 596374	2017	1	2	128
48b0-9fc4-	30.204314	-00.000074	2017		2	120
2f72bb2250f0						
217200283019	20.206075	95 505759	2017	2	2	100
01400e20-	30.206975	-05.595750	2017	2	2	120
10a7-4760-						
D283-						
01547984888						100
91664745-	30.206226	-85.600525	2012	1	1	128
1949-4f3e-						
ad07-						
fdfb879ff4af						
e8385b7b-	30.195423	-85.602431	2010	2	2	128
8ca7-44fe-						
8cc6-						
3aac2f9d4edb						
6a24b45e-	30.191913	-85.604232	2009	1	1	129
af40-4130-						
bad9-						
f957b1be5e14						
7a1609f5-	30.191129	-85.603911	2010	1	3	129
ed25-46cd-						
8fab-						
322160056acd						
fba628d5-	30.190955	-85.604312	2006	1	3	129
8887-4d18-						
9c7a-						
3e6bd8360b5d						
307ab433-	30.190742	-85.605497	2005	1	2	129
218c-45cf-						
96a3-						
079bba737fe1						
70e43a2d-	30 190702	-85 606066	2004	1	3	129
2301-4969-	30.130702	-00.000000	2004		5	125
0ff1						
5111-						
821a41cb	20 101622	85 606413	2004	1	2	120
02104100-	30.191022	-65.000415	2004		2	129
2139-4056-						
D18a-						
506/3992/531	00.010105					100
45a80b47-	30.213466	-85.591171	2018	1	1	128
56f2-448a-						
b678-						
74a4b6fceb59						

Record ID	Latitude	Longitude	Year Built	Number of Stories	Wind Damage Rating	Est. Wind Speed (mph)
d1889c8c-	30.213437	-85.591613	2018	1	2	128
44e8-45fd-						
b4bc-						
c9c8f0d987bf						
c87a0382-	30.213617	-85.591575	2018	1	1	128
b6c1-47eb-						
80d7-						
77b28fc571f6						
e537bbb6-	30.261671	-85.529744	2017	2	2	129
311d-4a35-						
a510-						
aaca9392da25						
86656f89-	30.244164	-85.631752	2014	2	1	124
cc9e-4a71-						
8f9d-						
896684429f47						
0fe48a2f-	30.220665	-85.639251	2008	1	2	126
ed78-4c58-						
a207-						
7a06273e978c						
87e0a3d6-	30.222330	-85.642212	2004	1	1	125
f680-4af5-						
9617-						
1799b6349190						
4f9e0ee2-	30.206458	-85.679557	2017	2	2	124
fc15-441b-						
b68b-						
56193217f0ac						

APPENDIX B: SUMMARY OF FIELDS IN THE ENHANCED HURRICANE MICHAEL DATASET

Col	umn	Column Header	Field	Format	Response Choices / Description	Percentage with Values (Excluding
Α	1	fulcrum_id	Record ID	Text	Auto-populated;	100%
					unique ID associated	
					with each record	
В	2	status	Damage	Single Choice	0=No Damage	100%
			State		1=Minor	
					2=Moderate	
					3=Severe	
					4=Destroyed	
С	3	project	Project	Text	Hurricane Michael	100%
					(2018)	
D	4	latitude	Latitude	Decimal	Auto-populated	100%
E	5	longitude	Longitude	Decimal	Auto-populated	100%
F	6	name_of_investigator	Name of	Text	Andrew Kennedy	100%
			Investigator		Brayan Wood	
					Brett Davis	
					David Prevatt	
					David Roueche	
					Daniel Smith	
					Dean Ruark	
					Doug Krafft	
					Erin Koss	
					Jean-Paul Pinelli	
					John Cleary	
					Justin Marshall	
					Keith Cullum	
					Kelly Turner	
					Kurt Gurley	
					Matt Janssen	
					Oscar Lafontaine	
					Tim Johnson	
G	7	date	Date	MM/DD/YYYY	Auto-populated	100%
Н	8	general_notes	General	Text	Investigator/Librarian	0.51%
			Notes		general notes	
I	9	assessment_type	Assessment	Single Choice	Aerial	100%
			Туре		Drive-by	
					On-site	
					Remote	
					General Area	
					Other	

Table B1. List of fields present in the enhanced Hurricane Michael (2018) dataset.

Column		Column Header	Field	Format	Response Choices / Description	Percentage with Values (Excluding Unknowns)
J	10	all_photos	All Photos	Comma separated values	Photos associated with record	91.84%
К	11	all_photos_captions	All Photos Captions	Comma separated text	All photo captions supplied by surveyor (if any	0.51%
L	12	all_photos_urls	Direct Path to Photo Hosted on Fulcrum	URL	Auto-populated	91.84%
М	13	audio	Audio	Comma separated values	Surveyor-supplied audio	0.13%
N	14	audio_url	Direct Path to Fulcrum Entry	URL	Auto-populated	0.13%
0	15	overall_damage_notes	Overall Damage Notes	Text	Overall damage notes supplied by surveyor/Librarian	49.74%
Ρ	16	hazards_present	Hazards Present	Multiple Choice (Comma separated text)	Flood Rain Surge Tree-fall Wind Wind-borne debris Unknown Other	99.87%
Q	17	wind_damage_rating	Wind Damage Rating	Single Choice	-1=Not Applicable 0=No Damage 1=Minor 2=Moderate 3=Severe 4=Destroyed	100%
R	18	surge_damage_rating	Surge Damage Rating	Single Choice	0=No Damage or Very Minor Damage 1=Minor 2=Moderate 3=Severe 4=Very Severe 5=Partial Collapse 6=Collapse	100%
S	19	rainwater_ingress_damage_rating	Rainwater Ingress Damage Rating	Single Choice	-1=Unknown 0=None Visible 1=Minor Ingress 2=Moderate	7.6%

Column		Column Header	Field	Format	Response Choices / Description	Percentage with Values (Excluding Unknowns)
					3=Severe	
					4=Complete	
Т	20	attribute_notes	Attribute	Text	Attribute notes	8.67%
			Notes		supplied by	
					surveyor/Librarian	
U	21	address_sub_thoroughfare	House	Text	Auto-populated	99.23%
			Number			
V	22	address_thoroughfare	Street	Text	Auto-populated	100%
			Name			
W	23	address_suite	Suite	Text	Auto-populated	0.13%
			Number			
Х	24	address_locality	City/Town	Text	Auto-populated	100%
Y	25	address_sub_admin_area	County	Text	Auto-populated	100%
Z	26	address_admin_area	State	Text	Auto-populated	100%
AA	27	address_postal_code	Zip Code	Text	Auto-populated	100%
AB	28	address_country	Country	Text	Auto-populated	93.88%
AC	29	address_full	Full Address	Text	Address supplied by	100%
					surveyor/Librarian	
AD	30	building_type	Building	Single Choice	Single Family	99.87%
			Туре		Multi-Family	
					Apartment	
					Assisted Living	
					Center	
					Condominium	
					Detached Garage	
					Government	
					Hotel/Motel	
					Manufactured Home	
					Manufacturing Plant	
					Marina	
					Office	
					Park Shelter	
					Professional	
					Religious	
					Restaurant	
					Retail	
					RV	
					Service Station	
					Shed	
					Supermarket	
					Warehouse	
					Unknown	
					Other	
AE	31	number_of_stories	Number of	Integer	1-25	97.45%
			Stories			

Coli	umn	Column Header	Field	Format	Response Choices / Description	Percentage with Values (Excluding Unknowns)
AF	32	understory_pct_of_building_footprint	Understory Area(% of Building Footprint)	Single Choice	0% - 100%	80.87%
AG	33	first_floor_elevation_feet	First Floor Elevation in Feet	Decimal	0-13	85.46%
AH	34	year_built	Year Built	Integer	Year of construction as indicated by public records or personal communication	97.96%
AI	35	roof_shape	Roof Shape	Multiple Choice (Comma separated text)	Complex Flat Gable Gable/Hip Combo Gambrel Hip Mansard Monoslope Unknown Other	96.05%
AJ	36	roof_slope	Roof Slope	Integer	Surveyor-supplied roof slope	74.23%
AK	37	front_elevation_orientation	Front Elevation Orientation	Integer	Surveyor-supplied front elevation orientation	87.63%
AL	38	structural_notes	Structural Notes	Text	Structural notes from surveyor	8.42%
AM	39	mwfrs	Main Wind Force Resisting System	Multiple Choice (Comma separated text)	Roof Diaphragm, wood Roof Diaphragm, steel Roof Diaphragm, concrete Roof Diaphragm, composite Wall Diaphragm, wood Wall Diaphragm, steel Wall Diaphragm, concrete Wall Diaphragm, masonry	74.87%

Column		Column Header	Field	Format	Response Choices / Description	Percentage with Values (Excluding Unknowns)
					Wall, X-bracing	
					Other	
AN	40	foundation type	Foundation	Multiple	Slab-on-grade	58 42%
/	40	loundulon_type	Type	Choice	Cast-in-place	00.4270
			1,900	(Comma	concrete piers	
				separated	Ground anchors and	
				text)	strapping	
					Crawlspace	
					Reinforced masonry	
					piers	
					Reinforced masonry	
					stem wall	
					Unreinforced	
					masonry piers	
					Unreinforced	
					masonry stem wall	
					Wood Piers <= 8 ft	
					VV000 Piers > o it	
					Other	
AO	41	wall anchorage type	Wall	Multiple	Anchor bolts with	3.32%
			Anchorage	Choice	nuts and washers	
			Туре	(Comma	Anchor bolts with	
				separated	missing nuts and	
				text)	washers	
					Metal straps	
					Concrete nails	
					Unknown	
					Other	
AP	42	wall_structure	Wall	Multiple	Wood frame	81.76%
			Structure	Choice	Masonry (reinforced)	
				(Comma	Masonry	
				separated	(unreiniorcea)	
				lext)		
					Concrete. moment	
					resisting frame	
					Steel, moment	
					resisting frame	
					Steel, braced frame	
					Steel, cold form	
					Insulated concrete	
					form (ICF) walls	

Column		Column Header	Field	Format	Response Choices / Description	Percentage with Values (Excluding Unknowns)
					Solid Brick Wythe	
					Unknown	
					Other	
AQ	43	wall_substrate	Wall	Multiple	Wood, sheathing	61.48%
			Substrate	Choice	(continuous)	
				(Comma	Wood, sheathing	
				separated	(corners only)	
				text)	Wood,dimensional	
					planks	
					Insulated sheathing	
					Insulated foam board	
					Non-engineered	
					wood panel	
					Metal panels	
					Not Applicable	
					Unknown	
					Other	
AR	44	wall_cladding	Wall	Multiple	Aluminum siding	92.86%
			Cladding	Choice	Brick	
				(Comma		
				separated	EIFS Eiber Coment Board	
				lext)	Corrugated steel	
					nanels	
					Planeis Plawood Siding	
					Stucco	
					Vinyl Siding	
					(standard)	
					Vinyl Siding (high	
					wind rated)	
					Vinyl Siding	
					(unknown)	
					Wood Boards	
					Wood Shake/Shingle	
					Unknown	
					Other	
AS	45	soffit_type	Soffit Type	Multiple	None	66.58%
				Choice	Vinyl	
				(Comma	Metal	
				separated	Wood	
				text)	Unknown	
					Other	
AT	46	front_wall_fenestration_ratio	Front Wall	Single Choice	0%-100%	50.13%
			Fenestration			
			Ratio			

Column		Column Header	Field	Format	Response Choices / Description	Percentage with Values (Excluding Unknowns)
AU	47	front_wall_fenestration_protection	Front Wall Fenestration Protection	Multiple Choice (Comma separated text)	None Unknown Impact Resistant Plywood/OSB Panel Hurricane Shutter Other	35.97%
AV	48	left_wall_fenestration_ratio	Left Wall Fenestration Ratio	Single Choice	0%-100%	47.07%
AW	49	left_wall_fenestration_protection	Left Wall Fenestration Protection	Multiple Choice (Comma separated text)	None Unknown Impact Resistant Plywood/OSB Panel Hurricane Shutter Other	33.42%
AX	50	back_wall_fenestration_ratio	Back Wall Fenestration Ratio	Single Choice	0%-100%	42.98%
AY	51	back_wall_fenestration_protection	Back Wall Fenestration Protection	Multiple Choice (Comma separated text)	None Unknown Impact Resistant Plywood/OSB Panel Hurricane Shutter Othe	33.04%
AZ	52	right_wall_fenestration_ratio	Right Wall Fenestration Ratio	Single Choice	0%-100%	46.30%
BA	53	right_wall_fenestration_protection	Right Wall Fenestration Protection	Multiple Choice (Comma separated text)	None Unknown Impact Resistant Plywood/OSB Panel Hurricane Shutter Other	34.06%
BB	54	large_door_present	Large Door Present	Multiple Choice (Comma separated text)	Yes No N/A	76.91%
BC	55	large_door_opening_type_front	Large Door Opening Type Front	Multiple Choice (Comma separated text)	None Single garage door (standard) Double garage door (standard) Single garage door (wind-rated)	76.02%

Column		Column Header	Field	Format	Response Choices / Description	Percentage with Values (Excluding
					Double garage door	Chikilowiloy
					(wind-rated)	
					Single garage door	
					(unknown)	
					Double garage door	
					(unknown)	
					Sectional door	
					Roll-up door	
					Other	
BD	56	large_door_opening_type_left	Large Door	Multiple	None	73.60%
			Opening	Choice	Single garage door	
			Type Left	(Comma	(standard)	
				separated	Double garage door	
				text)	(standard)	
					Single garage door	
					(wind-rated)	
					Double garage door	
					(wind-rated)	
					Single garage door	
					(unknown)	
					Double garage door	
					(unknown)	
					Sectional door	
					Roll-up door	
					Other	
BE	57	large_door_opening_type_back	Large Door	Multiple	None	73.34%
			Opening	Choice	Single garage door	
			Type Back	(Comma	(standard)	
				separated	Double garage door	
				text)	(standard)	
					Single garage door	
					(wind-rated)	
					Double garage door	
					(wind-rated)	
					Single garage door	
					(unknown)	
					Double garage door	
					(unknown)	
					Sectional door	
					Koll-up door	
Dr	50	large deer opening twee right		Multiple	Uner	72 040/
ВГ	58	large_uoor_opening_type_right		Choice		13.21%
				Choice	(standard)	
			i ype Right	Comma	(stanuard)	

Column		Column Header	Field	Format	Response Choices / Description	Percentage with Values (Excluding Unknowns)
				separated	Double garage door	,
				text)	(standard)	
					Single garage door	
					(wind-rated)	
					Double garage door	
					(wind-rated)	
					Single garage door	
					(unknown)	
					Double garage door	
					(unknown)	
					Sectional door	
					Roll-up door	
					Other	
BG	59	roof_system	Roof	Multiple	Steel, cold formed	81.12%
			System	Choice	Steel, hot rolled	
				(Comma	Steel, joists	
				separated	Concrete slab	
				text)	Wood, rafter	
					Wood, trusses	
					Wood, unknown	
					Unknown	
					Other	
BH	60	r2wall_attachment	Roof to Wall	Multiple	Toe-nails	1.15%
			Attachment	Choice	Metal ties	
				(Comma	Metal straps	
				separated	Bolted connection	
				text)	Welded connection	
					Unknown	
					Other	
BI	61	r2w_attachment_type	Roof to Wall	Text	Surveyor-supplied	0.38%
			Attachment		roof to wall	
			Туре		attachment type	
BJ	62	roof_substrate_type	Roof	Multiple	Plywood/OSB	53.44%
			Substrate	Choice	Dimensional lumber	
			Туре	(Comma	Metal deck	
				separated	Concrete	
				text)	None	
					Unknown	
					Other	
BK	63	roof_cover	Roof Cover	Multiple	Asphalt shingles (3-	93.11%
				Choice	tab)	
				(Comma	Asphalt shingles	
				separated	(laminated)	
				text)	Built-up with Gravel	

Column		Column Header	Field	Format	Response Choices / Description	Percentage with Values (Excluding Unknowns)
					Built-up without	· · · · · · · · · · · · · · · · · · ·
					Gravel	
					Clay tiles	
					Concrete tiles	
					Metal shingles	
					Metal, corrugated	
					Metal, standing seam	
					Roll roofing	
					Single ply	
					Wood shake	
					Wood shingle	
					Unknown	
					Other	
BL	64	secondary_water_barrier	Secondary	Multiple	None	1.79%
			Water	Choice	Closed-cell urethane	
			Barrier	(Comma	foam adhesive	
				separated	Fully adhered	
				text)	membrane	
					High performance	
					underlayment	
					Self-adhering	
					membrane over	
					joints	
					Unknown	
					Other	
BM	65	overhang_length	Overhang	Integer	Surveyor-supplied	72.83%
			Length		overhang length	
BN	66	parapet_height_inches	Parapet	Integer	Surveyor-supplied	66.07%
			Height in		parapet height	
			inches			
BO	67	wind_damage_details	Wind	Text	Wind damage notes	22.58%
			Damage		from surveyor	
			Details			
BP	68	roof_structure_damage_	Roof	Single Choice	0%-100%	95.54%
			Structure			
			Damage			
BQ	69	roof_substrate_damage	Roof	Single Choice	0%-100%	93.24%
			Substrate			
			Damage			
BR	70	roof_cover_damage_	Roof Cover	Single Choice	0%-100%	95.41%
			Damage			
BS	71	wall_structure_damage_	Wall	Single Choice	0%-100%	95.28%
			Structure			
			Damage			
Coli	umn	Column Header	Field	Format	Response Choices / Description	Percentage with Values (Excluding Unknowns)
------	-----	--------------------------------------	--------------	---------------	-----------------------------------	--
BT	72	wall_substrate_damage_	Wall	Single Choice	0%-100%	92.35%
			Substrate			
			Damage			
BU	73	building_envelope_damage_	Building	Single Choice	0%-100%	95.03%
			Envelope			
			Damage			
BV	74	front_wall_fenestration_damage	Front Wall	Single Choice	0%-100%	91.96%
			Fenestration			
			Damage			
BW	75	left_wall_fenestration_damage	Left Wall	Single Choice	0%-100%	89.16%
			Fenestration			
			Damage			
BX	76	back_wall_fenestration_damage	Back Wall	Single Choice	0%-100%	86.99%
			Fenestration			
			Damage			
BY	77	right_wall_fenestration_damage	Right Wall	Single Choice	0%-100%	89.41%
			Fenestration			
			Damage			
BZ	78	large_door_failure	Large Door	Multiple	None	70.03%
			Failure	Choice	Front	
				(Comma	Left	
				separated	Back	
				text)	Right	
					All	
					other	
CA	79	soffit_damage	Soffit	Single Choice	0%-100%	50.77%
			Damage			
СВ	80	fascia_damage_	Fascia	Single Choice	0%-100%	81.63%
			Damage			
CC	81	stories_with_damage	Stories with	Integer	Surveyor-supplied	80.74%
			Damage		stories with damage	
CD	82	water_induced_damage_notes	Water	Text	Water induced	9.31%
			Induced		damage notes from	
			Damage		surveyor	
			Notes			
CE	83	percent_of_building_footprint_eroded	Percent of	Single Choice	0%-100%	29.85%
			Building			
			Footprint			
L			Eroded			
CF	84	damage_to_understory	Damage to	Single Choice	0%-100%	33.80%
			Understory			
CG	85	maximum_scour_depth_inches	Maximum	Integer	Surveyor-supplied	28.19%
			Scour Depth		maximum scour	
			in inches		depth	

Col	umn	Column Header	Field	Format	Response Choices / Description	Percentage with Values (Excluding Unknowns)
СН	86	piles_missing_or_collapsed	Piles	Single Choice	0%-100%	37.24%
			Missing or			
			Collapsed			
CI	87	piles_leaning_or_broken	Piles	Single Choice	0%-100%	36.61%
			Leaning or			
			Broken			
CJ	88	cause_of_foundation_damage	Cause of	Multiple	Erosion	24.62%
			Foundation	Choice	Wave	
			Damage	(Comma	Flood	
				separated	Floating Debris	
				text)	Velocity Scour	
					None	
					Unknown	
					Other	
СК	89	reroof_year	Reroof Year	Integer	Surveyor-supplied	0.38%
					reroof year	
CL	90	retrofit_type_1	Retrofit	Text	Surveyor-supplied	0.89%
			Type 1		retrofit description	
СМ	91	retrofit_1_year	Retrofit 1	Integer	Surveyor-supplied	0.26%
			Year		retrofit year	
CN	92	retrofit_type_2	Retrofit	Text	Surveyor-supplied	0.13%
			Type 2		retrofit description	
CO	93	retrofit_2_year	Retrofit 2	Integer	Surveyor-supplied	0%
			year		retrofit year	
CP	94	data_librarians	Data	Text	Data Librarian Name	99.36%
			Librarian			
CQ	95	qc_progress_code	QC	Single Choice	1	100%
			Progress		2	
			Code		2e	
					3	
					3e	
CR	96	qc_notes	QC Notes	Text	Notes from Data	14.16%
					Librarians regarding	
					the DE/QC process	

APPENDIX C: COMPLETE LIST OF RECOVERY ADVISORY 2 RECOMMENDATIONS

Recommendation Scope	Nu	mber	FEMA P-2077 Recommendations
Floodplain management/requirement	1	FL-1a	The Florida Division of Emergency Management (FDEM) should consider developing/modifying training on the flood
training/regulation/provision			provisions in the Florida Building Code (FBC) and local
	2	FL-1b	Building Officials Association of Florida (BOAF) and other
	-		stakeholders should consider developing additional training on
			roles and responsibilities for communities contracting building
			department services to a private company.
	3	FL-3a	FEMA should update FEMA P-758, Substantial
			Improvement/Substantial Damage Desk Reference (2010h),
			and concurrently update FEMA 213, Answers to Questions
			about Substantially Damaged Buildings (2018a), to be
	4	FL-3b	EFMA should consider expanding/clarifying existing training
	-	1 2 00	materials related to Substantial Improvement / Substantial
			Damage.
	5	FL-4	Communities should outline clear and consistent responsibilities
			when contracting with private-sector providers to administer all
			or part of the community's responsibilities under the FBC.
	6	FL-5a	FEMA should provide guidance to state and local governments
			on seeking assistance related to building code and lioodplain
			authorized under Section 1206 of the Disaster Recovery
			Reform Act of 2018.
	7	FL-5b	FDEM should continue to encourage pre-event evaluation of
			post-disaster needs and inform appropriate parties about
			assessing resources through Statewide Mutual Aid Agreement
Ruilding onvolono	Q	EL 20	and Emergency Management Assistance Compact.
inspection	0	FL-2a	priority.
	9	FL-2b	BOAF, Florida Home Builders Association, and other
			stakeholders should consider developing training and creating a
Expectration test standard	10	FL-6	EFMA should work with the American Architectural
Tenestration test standard	10	1 2-0	Manufacturers Association / Window and Door Manufacturers
			Association / Canadian Standards Association. Insurance
			Institute for Business & Home Safety, International Code
			Council (ICC), and other select industry partners to incorporate
			more comprehensive water intrusion testing requirements that
			improve overall performance into testing standards.
Design wind speed in	11	FL-/	The wind research engineering community should perform a revised analysis of the ASCE 7 basic wind speed maps for the
numeane region			Florida Panhandle region to include data from Hurricane
			Michael.
	12	FL-8a	The FBC should treat all areas within 1 mile inland from the
			entire Florida coastline as a wind-borne debris region (WBDR).
	13	FL-8b	The ASCE 7 Wind Load Subcommittee should revise ASCE 7
			to lower the basic wind speed trigger in ASCE 7 for requiring
			j giazing to be protected on Kisk Category IV buildings in the
	14	FL-8c	Building owners outside the WBDR but within the burricane-
		1 2-00	prone region should consider protecting the alazed openings on
			their buildings.

Recommendation Scope	Nu	mber	FEMA P-2077 Recommendations
	15	FL-8d	The International Building Code / International Residential Code / FBC should be updated where needed to ensure glazed window, skylight, door, and shutter assemblies have a permanent label that provides traceability to the manufacturer and product.
	16	FL-8e	The ASCE 7 Wind Load Subcommittee should consider
Flood hazard zone	17	FL-9	Communities should consider more stringent building requirements for development or reconstruction in the unshaded Zone X (area of minimal flood hazard) and shaded Zone X (area of moderate flood hazard).
	18	FL-11a	FEMA and FDEM should consider submitting a code change proposal to the FBC, applying ASCE 24, Flood Resistant Design and Construction, Flood Design Class 4 requirements outside the Special Flood Hazard Area (SFHA) in moderate flood hazard areas (shaded Zone X) and to consider flood risk for minimal flood hazard areas (unshaded Zone X).
	19	FL-11b	FEMA should consider developing a change proposal for ASCE 24 requiring consideration of flood risk for essential facilities outside the SFHA in minimal flood hazard areas (unshaded Zone X) and requiring Flood Design Class 4 to apply in moderate flood zones outside of the SFHA.
	20	FL-12	Local floodplain administrators, design professionals, and building owners should incorporate more freeboard than the minimum required in ASCE 24 based on Flood Design Class whenever possible.
House erosion	21	FL-13a	FEMA should review and update its Event-Based Erosion methodology.
	22	FL-13b	For parcels that are seaward of Florida's Coastal Construction Control Line, communities should require—and key stakeholders should encourage—the placement of houses with the maximum distance from the flood source possible within each parcel.
	23	FL-13c	The Florida Department of Environmental Protection should implement current best practices and consider revising its requirements for erosion vulnerability assessments for new construction in erosion control areas.
	24	FL-13d	Permitting agencies should evaluate permitting criteria and performance requirements for new or replacement bulkheads with respect to design conditions, including the effects of saturated backfill, wave forces, overtopping, and erosion on both the water and land sides.
	25	FL-13e	Communities and building owners should consider acquisition or relocation projects for existing buildings in areas highly vulnerable to erosion.
Concrete pile	26	FL-10a	Industry groups, interested stakeholders, and/or academia should further evaluate the performance of the concrete pile foundations that failed during Hurricane Michael to determine why they failed.
	27	FL-10b	FEMA and FDEM should consider providing a code change proposal to the International Codes requiring contractors and/or manufacturers to add length labels or incremental depth markers on vertical piles.
Roof Coverings	28	FL-14a	Code enforcement authorities having jurisdiction across Florida should make roof covering and underlayment inspections a priority.

29 FL-14b Industry groups should assess the causes for the widespread asphalt shingle roof covering loss that was observed by the MAT 30 FL-14c Contractors and inspectors must ensure roof covering repairs and replacements conform with the FBC as required. 31 FL-14d Contractors and inspectors must ensure roof covering replacements conform with the FBC. before installing a new roof covering, contractors should emove the existing roof covering to evaluate the roof sheathing attachment, and add supplemental fasteners in accordance with the wind mitigation provisions of FBC if the sheathing attachment is found to be deficient. 32 FL-14e FEMA and FDEM should consider supporting current code change proposals to the 7th Edition FBC that provide for improved underayment systems. 33 FL-14f The Asphalt Roofing Contractors Association should place more emphasis on proper sofit installation to limit wind-three nain. 34 FL-15a Designers, contractors, and inspectors should place more emphasis on proper sofit installation to limit wind-three nain. 36 FL-15b The FIOrida Building Code (FBCR), Residential should be revised to require sofit panels to be labeled to provide traceability to the manufacturer and product. 37 FL-15d Owners should determine whether the sofifts attached to their house are "foated," and, if so, take appropriate attached to their house are "foated," and, if so, take appropriate attached to their house are "foated," and, if so, take approprisate infligation. <th>Recommendation Scope</th> <th>Nu</th> <th>mber</th> <th>FEMA P-2077 Recommendations</th>	Recommendation Scope	Nu	mber	FEMA P-2077 Recommendations
sphalf shingle roof covering loss that was observed by the MAT 30 FL-14c Contractors and inspectors must ensure roof covering repairs and replacements conform with the FBC as required. 31 FL-14d On buildings built prior to the FBC, before installing a new roof covering, contractors should remove the existing roof covering to evaluate the roof sheathing attachment, and add supplemental fasteners in accordance with the wind mitigation provisions of FBC if the sheathing attachment is found to be deficient. 32 FL-14f FEMA and FDEM should consider supporting current code change proposals to the 7th Edition FBC that provide for improved underlayment systems. 33 FL-14f The Asphalt Roofing Manufacturers Association and National Roofing Contractors Association should consider updating their guidances. 36 FL-15a Designers, contractors, and inspectors should place more emphasis on proper soffit installation to limit wind-driven rain jurisdictions should prolitize performing soffit inspections. 36 FL-15c The Florida Building Code (FBCR), Residential should be revised to requires and r, if so, take appropriate mitigating actions. 37 FL-15d Owners should determine whether the soffits attached to their house are 'fidee' dri failure and develop solutions. 38 FL-16 Industry groups and academia should perform research on commonly used ridge vent products to better determine the causes of ridge vent failure and develop solutions.	•	29	FL-14b	Industry groups should assess the causes for the widespread
MA1 MA1 30 FL-14c Contractors and inspectors must ensure roof covering repairs and replacements conform with the FEC as required. 31 FL-14c Contractors should remove the existing roof covering to evaluate the roof sheathing attachment, and add supplemental fasteners in accordance with the wind mitigation provisions of FEC if the sheathing attachment is found to be deficient. 32 FL-14e FEMA and FDEM should consider supporting current code change proposals to the 7th Edition FEC that provide for improved underlayment systems. 33 FL-14f The Asphalt Roofing Manufacturers Association and National Roofing Contractors Association should consider updating their guidance materials based on observations from the 2017 and 2018 hurricanes. Soffits 34 FL-15a Designers, contractors, and inspectors should place more emphasis on proper soffit installation to limit wind-driven rain. 35 FL-15a Designers, contractors, and inspectors, and iurisdictions should pointize performing soffit inspections, and iurisdictions should pointize performing soffit inspections, and iurisdictions should promite performing soffit inspections. 36 FL-15d Owners should attached to their house are 'floated,' and, if so, take appropriate mitigating actions. 37 FL-15d Owners should denome velocitient well the the soffits attached to their house are 'floated,' and, if so, take appropriate mitigating actions. Wall c				asphalt shingle roof covering loss that was observed by the
30 FL-14c Contractors and inspectors must ensure for overing repairs and replacements conform with the FBC as required. 31 FL-14d On buildings built prior to the FBC, before installing an ewr oof covering, contractors should emove the existing roof covering to evaluate the roof sheathing attachment, and add supplemental fasteners in accordance with the wind miligation provisions of FBC if the sheathing attachment is found to be deficient. 32 FL-14e FEMA and FDEM should consider supporting current code change proposals to the 7th Edition FBC that provide for improved underlayment systems. 33 FL-14e FEMA and FDEM should consider updating their guidance materials based on observations from the 2017 and 2018 hurricanes. 36 FL-15b Designers, contractors, and inspectors should place more emphasis on proper sofit installation to limit wind-driven rain. 36 FL-15b FEMA and FDEM should consider submitting a code change proposal to the FBC requiring soffit inspections. 36 FL-15c The Florida Building Code (FBCR), Residential should be revised to require softi the softis attached to their house are "florida", and, if so, take appropriate mitigating actions. 37 FL-16 Industry groups and academia should perform research on commonly used ridge vent products to better determine the causes of ridge vent failure and develop solutions. Wall coverings 39 FL-17a Industry groups and academia should perform resea				
31 FL-14d On buildings built prior to the FBC, before installing a new roof covering, contractors should remove the existing roof covering to evaluate the roof sheathing attachment, and add supplemental fasteners in accordance with the simulation provisions of FBC if the sheathing attachment the wind mitigation provisions of FBC if the sheathing attachment into wind to be deficient. 32 FL-14e FEMA and FDEM should consider supporting current code change proposals to the 7th Edition FBC that provide for improved underlayment systems. 33 FL-14f The Asphalt Roofing Manufacturers Association and National Roofing Contractors Association should consider updating their guidance materials based on observations from the 2017 and 2018 hurricanes. Soffits 34 FL-15a Designers, contractors, and inspectors should place more emphasis on proper soffit installation to limit wind-driven rain. 35 FL-15b FEMA and FDEM should consider updating their guidance materials of the HBC requiring soffit inspections, and jurisdictions should prioritize parforming this should be revised to require soffit panels to be labeled to provide traceability to the manufacturer and product. 36 FL-16 Owners should determine whether the soffits attached to their house are "floated," and, if so, take appropriate mitigating actions. Rigid vent 38 FL-17e The FBC and FBCR should be revised to require wity sliding be revised to require soffit panels to be labeled to provide tracease of ridge vent failure and develop solutions.		30	FL-14C	and replacements conform with the FBC as required.
Kip is a series of the seris of the seris of the series of the series of the series of the		31	FL-14d	On buildings built prior to the FBC, before installing a new roof
kiew in the roof sheathing attachment, and add supplemental fasteners in accordance with the wind mitigation provisions of FBC if the sheathing attachment is found to be deficient. 32 FL-14e FEMA and FDEM should consider supporting current code change proposals to the 7th Edition FBC that provide for improved underlayment systems. 33 FL-14t The Asphalt Roofing Manufacturers Association and National Roofing Contractors, Association should consider updating their guidance materials based on observations from the 2017 and 2018 hurricanes. Soffits 34 FL-15a Designers, contractors, and inspectors should place more emphasis on proper soffit installation to limit wind-driven rain. Soffits 35 FL-15b FEMA and FDEM should consider submitting a code change proposal to the FBC requiring soffit inspections. and jurisdictions should prioritize performing soffit inspections. 36 FL-15c The Florida Building Code (FBCR), Residential should be revised to require soffit panels to be labeled to provide traceability to the manufacturer and product. 37 FL-15C Owners should determine whether the soffits attached to their house are "foated," and, if so, take appropriate mitigating actions. Rigid vent 38 FL-16 Industry groups and academia should perform research on commonly used ridge vent failure and develop solutions. Wall coverings 39 FL-176 The FBC and FBCR should be revised to require wind sid				covering, contractors should remove the existing roof covering
supplemental fasteners in accordance with the wind mitigation provisions of FBC if the sheathing attachment is found to be deficient. 32 FL-14e FEMA and FDEM should consider supporting current code change proposals to the 7th Edition FBC that provide for improved underlayment systems. 33 FL-14f The Asphalt Roofing Manufacturers Association and National Roofing Contractors Association should consider updating their guidance materials based on observations from the 2017 and 2018 hurricanes. Soffits 34 FL-15a Designers, contractors, and inspectors should place more emphasis on proper soffit installation to limit wind-driven rain. 35 FL-15b The Florida Building Code (FBCR), Residential should be revised to require soffit anels to be labeled to provide traceability to the manufacturer and product. 36 FL-15c The Florida Building Code (FBCR), Residential should be revised to require soffit anels to be labeled to provide traceability to the manufacturer and product. 37 FL-16 Industry groups and academia should perform research on commonly used ridge vent products to better determine the causes of ridge vent failure and develop solutions. Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. 40 FL-17b Vinyl siding manufacturers, insurance organizations, and other stakeholders should consider should consider undireventy as vu				to evaluate the roof sheathing attachment, and add
Soffits FL-14e FE/A and FDEM should consider supporting current code change proposals to the 7th Edition FBC that provide for improved underlayment systems. 33 FL-14e FE/MA and FDEM should consider supporting current code change proposals to the 7th Edition FBC that provide for improved underlayment systems. 33 FL-14t The Asphalt Roofing Manufacturers Association should consider updating their guidance materials based on observations from the 2017 and 2018 hurricanes. Soffits 34 FL-15a Designers, contractors, and inspectors should place more emphasis on proper soffit installation to limit wind-driven rain. 35 FL-15b FEMA and FDEM should consider submitting a code change proposal to the FBC requiring soffit inspections, and jurisdictions should prioritize performing soffit inspections. 36 FL-15C The Florida Building Code (FBCR), Residential should be revised to require soffit panels to be labeled to provide traceability to the manufacturer and product. 37 FL-15d Owners should determine whether the soffits attached to their house are floated," and, if so, take appropriate mitigating actions. 40 FL-17b Industry groups and academia should perform research on comonly used file resublet on provides to better determine the causes of ridge vent frouducts to better determine the causes of ridge vent follor ensel actions. 41 FL-17b FEMA and FDEM should consider submitting a code change proprolate pr				supplemental fasteners in accordance with the wind mitigation
32 FL-14e FEMA and FDEM should consider supporting current code change proposals to the 7th Edition FBC that provide for improved underlayment systems. 33 FL-14t The Asphalt Roofing Manufacturers Association and National Roofing Contractors Association should consider updating their guidance materials based on observations from the 2017 and 2018 hurricanes. Soffits 34 FL-15a Designers, contractors, and inspectors should place more emphasis on proper soffit installation to limit wind-driven rain. 35 FL-15b FEMA and FDEM should consider submitting a code change proposal to the FBC requiring soffit inspections, and jurisdictions should pirotilize performing soffit inspections. 36 FL-15c The Fordat Building Code (FBCR), Residential should be revised to require soffit panels to be labeled to provide traceability to the manufacturer and product. 37 FL-15d Owners should determine whether the soffits attached to their house are "floated," and, if so, take appropriate mitigating actions. Wall coverings 39 FL-17b FEMA and FDEM should consider submitting a code change proposal to the FBC requiring restrict wall covering inspections. 40 FL-17b Industry groups and academia should perform research on componly used ridge vent products to better determine the causes of ridge vent products to better determine the causes of ridge vent products on proparations, and other stakeholders should consider submiting a code change proposal to the FBC requiring avitor				provisions of FBC if the sheathing attachment is found to be deficient.
Soffits 33 FL-14f The Asphalt Roofing Manufacturers Association and National Roofing Contractors Association should consider updating their guidance materials based on observations from the 2017 and 2018 hurricanes. Soffits 34 FL-15a Designers, contractors, and inspectors should place more emphasis on proper soffit installation to limit wind-driven rain. 35 FL-15b FEMA and FDEM should consider submitting a code change proposal to the FBC requiring soffit inspections, and jurisdictions should prioritize performing soffit inspections. 36 FL-15c The Florida Building Code (FBCR), Residential should be revised to require soffit panels to be labeled to provide traceability to the manufacturer and product. 37 FL-16d Industry groups and academia should perform research on commonly used ridge vent products to better determine the causes of ridge vent products to		32	FL-14e	FEMA and FDEM should consider supporting current code
improved underlayment systems. 33 FL-14f The Asphalt Roofing Manufacturers Association and National Roofing Contractors Association should consider updating their guidance materials based on observations from the 2017 and 2018 hurricanes. Soffits 34 FL-15a Designers, contractors, and inspectors should place more emphasis on proper soffit installation to limit wind-driven rain. 35 FL-15b Designers, contractors, and inspectors should place more emphasis on proper soffit installation to limit wind-driven rain. 36 FL-15c The Florida BUIding Code (FBCR), Residential should be revised to require soffit panels to be labeled to provide traceability to the manufacturer and product. 37 FL-15C Owners should determine whether the soffits attached to their house are "floated," and, if so, take appropriate mitigating actions. Rigid vent 38 FL-16 Industry groups and academia should perform research on commonly used ridge vent failure and develop solutions. Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior for vinyl siding the takeholders should contine research and investigations of the appropriate pressure equalization factor for vinyl siding. 41 FL-17c The FBC and FBCR should be revised to require vinyl siding be labeled to provide traceability to the manufacturers, insurance organizations, and other stakeholders should continue resea				change proposals to the 7th Edition FBC that provide for
33 FL-14f The Asphalt Roofing Manufacturers Association and National Roofing Contractors Association should consider updating their guidance materials based on observations from the 2017 and 2018 hurricanes. Soffits 34 FL-15a Designers, contractors, and inspectors should place more emphasis on proper soffit inspections, and jurisdictions should prioritize performing soffit inspections, and jurisdictions should prioritize performing soffit inspections. 36 FL-15b FEMA and FDEM should consider submitting a code change proposal to the FBC requiring soffit inspections. 37 FL-15c The Florida Building Code (FBCR), Residential should be revised to require soffit panels to be labeled to provide traceability to the manufacturer and product. Rigid vent 38 FL-161 Owners should determine whether the soffits attached to their house are "floated," and, if so, take appropriate mitigating actions. Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. Vulnerabilities assessment 42 FL-17a FEMA and FDER Should be revised to require vily isiding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-17a FEMA and FDER Sc should ocntice a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Building fo				improved underlayment systems.
Roofing Contractors Association should consider updating their guidance materials based on observations from the 2017 and 2018 hurricanes. Soffits 34 FL-15a Designers, contractors, and inspectors should place more emphasis on proper soffit installation to limit wind-driven rain. 35 FL-15b FEMA and FDEM should consider submitting a code change proposal to the FBC requiring soffit inspections, and jurisdictions should prioritize performing soffit inspections. 36 FL-15c The Florida Building Code (FBCR), Residential should be revised to require soffit panels to be labeled to provide traceability to the manufacturer and product. 37 FL-15d Owners should determine whether the soffits attached to their house are "floated," and, if so, take appropriate mitigating actions. Rigid vent 38 FL-16 Industry groups and academia should perform research on commonly used ridge vent products to better determine the causes of ridge vent failure and develop solutions. Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proprised pressure equilization factor for vinyl siding. Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Reterofitting Buildings from high-wind events as vulnerabilities that should be addressed in their simillar undamaget o other buildings from high-wind events as vulne		33	FL-14f	The Asphalt Roofing Manufacturers Association and National
Soffits 34 FL-15a Designers, contractors, and inspectors should place more emphasis on proper soffit installation to limit wind-driven rain. 35 FL-15b FEMA and FDEM should consider submitting a code change proposal to the FBC requiring soffit inspections, and jurisdictions should prioritize performing soffit inspections. 36 FL-15c The Florida Building Code (FBCR), Residential should be revised to require soffit panels to be labeled to provide traceability to the manufacturer and product. 37 FL-15d Owners should determine whether the soffits attached to their house are "floated," and, if so, take appropriate mitigating actions. Rigid vent 38 FL-16 Industry groups and academia should perform research on commonly used ridge vent failure and develop solutions. Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. 40 FL-17b Vinyl siding manufacturers, insurance organizations, and other stakeholders should continue research and investigations of the appropriate pressure equalization factor for vinyl siding. Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 20190) before beginning a wind retrofit project. </td <td></td> <td></td> <td></td> <td>Roofing Contractors Association should consider updating their</td>				Roofing Contractors Association should consider updating their
Soffits 34 FL-15a Designers, contractors, and inspectors should place more emphasis on proper soffit installation to limit wind-driven rain. 35 FL-15b FEMA and FDEM should consider submitting a code change proposal to the FBC requiring soffit inspections, and jurisdictions should prioritize performing soffit inspections, and provide 36 FL-15c The Florida Building Code (FBCR), Residential should be revised to require soffit panels to be labeled to provide traceability to the manufacturer and product. 37 FL-15d Owners should determine whether the soffits attached to their house are "floated," and, if so, take appropriate mitigating actions. Rigid vent 38 FL-16 Industry groups and academia should perform research on commonly used ridge vent products to better determine the causes of ridge vent failure and develop solutions. Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. 40 FL-17b Vinyl siding manufacturers, insurance organizations, and other stakeholders should continue research and investigations of the appropriate pressure equalization factor for vinyl siding. 41 FL-17c The FBC and FBCR should be revised to require vinyl siding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers an				guidance materials based on observations from the 2017 and
Soffits 34 FL-15a Designers, contractors, and inspectors should place more emphasis on proper soffit installation to limit wind-driven rain. 35 FL-15b FEMA and FDEM should consider submitting a code change proposal to the FBC requiring soffit inspections, and jurisdictions should prioritize performing soffit inspections. 36 FL-15c The Florida Building Code (FBCR), Residential should be revised to require soffit panels to be labeled to provide traceability to the manufacturer and product. 37 FL-15d Owners should determine whether the soffits attached to their house are "floated," and, if so, take appropriate mitigating actions. Rigid vent 38 FL-16 Industry groups and academia should perform research on commonly used ridge vent failure and develop solutions. Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections, and other stakeholders should continue research and investigations of the appropriate pressure equalization factor for vinyl siding. 40 FL-17b The FBC and FBCR should be revised to require vinyl siding. 41 FL-18a Designers and building owners should consider damage buildings. 43 FL-18b As appropriate, designers and building owners should consider damage to other buildings. 44 FL-18b Segners, building owners, and operators of critical facilities sh				2018 hurricanes.
Big Ferminal Second Se	Soffits	34	FL-15a	Designers, contractors, and inspectors should place more
35 FL-15b FEMA and FDEM should consider submitting a code change proposal to the FBC requiring soffit inspections, and jurisdictions should prioritize performing soffit inspections. 36 FL-15c The Florida Building Code (FBCR), Residential should be revised to require soffit panels to be labeled to provide traceability to the manufacturer and product. 37 FL-15d Owners should determine whether the soffits attached to their house are "floated," and, if so, take appropriate mitigating actions. Rigid vent 38 FL-16 Industry groups and academia should perform research on commonly used ridge vent products to better determine the causes of ridge vent failure and develop solutions. Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. 40 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. 41 FL-17a The FBC and FBCR should be revised to require vinyl siding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Ming Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18b As appropriat		05		emphasis on proper soffit installation to limit wind-driven rain.
Wall coverings Second Sec		35	FL-150	FEMA and FDEM should consider submitting a code change
36 FL-15c The Florida Building Code (FBCR), Residential should be revised to require soffit panels to be labeled to provide traceability to the manufacturer and product. 37 FL-15d Owners should determine whether the soffts attached to their house are "floated," and, if so, take appropriate mitigating actions. Rigid vent 38 FL-16 Industry groups and academia should perform research on commonly used ridge vent products to better determine the causes of ridge vent failure and develop solutions. Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. 40 FL-17b Vinyl siding manufacturers, insurance organizations, and other stakeholders should consider submitting. 41 FL-17c The FBC and FBCR should be revised to require vinyl siding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers and building owners should consider a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings from Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18c Designers, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safe				proposal to the FBC requiring some inspections, and
30 FL-13c The Funda Building Output (FDCN), residential should be revised to require sofft panels to be labeled to provide traceability to the manufacturer and product. 37 FL-15d Owners should determine whether the soffts attached to their house are "floated," and, if so, take appropriate mitigating actions. Rigid vent 38 FL-16 Industry groups and academia should perform research on commonly used ridge vent products to better determine the causes of ridge vent failure and develop solutions. Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. 40 FL-17b Vinyl siding manufacturers, insurance organizations, and other stakeholders should be revised to require vinyl siding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18c As appropriate, designers, and ouperators of critical facilities should be addressed in their similar undamaged building. 44 FL-18c Designers, building owners, and operators of critical facilities should be addressed in their similar undamaged buildings. 644 FL-18c Des		36	EL 150	The Elerida Building Code (EBCP) Residential should be
Interseed billing to the manufacturer and product. 37 FL-15d Owners should determine whether the soffits attached to their house are "floated," and, if so, take appropriate mitigating actions. Rigid vent 38 FL-16 Industry groups and academia should perform research on commonly used ridge vent products to better determine the causes of ridge vent failure and develop solutions. Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. 40 FL-17b Vinyl siding manufacturers, insurance organizations, and other stakeholders should continue research and investigations of the appropriate pressure equalization factor for vinyl siding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18b As appropriate, designers and building womers, and operators of critical facilities should cortical residue buildings. 44 FL-18c Designers, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthqu		30	FL-150	revised to require soffit papels to be labeled to provide
37 FL-15d Owners should determine whether the soffits attached to their house are "floated," and, if so, take appropriate mitigating actions. Rigid vent 38 FL-16 Industry groups and academia should perform research on commonly used ridge vent products to better determine the causes of ridge vent failure and develop solutions. Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. 40 FL-17b Vinyl siding manufacturers, insurance organizations, and other stakeholders should continue research and investigations of the appropriate pressure equalization factor for vinyl siding. 41 FL-17c The FBC and FBCR should be revised to require vinyl siding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Migh -wind events as vulnerabilities that should be addressed in their similar undamaged buildings. 44 FL-18b As appropriate, designers and building owners and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes,				traceability to the manufacturer and product
Rigid vent 38 FL-16 Industry groups and academia should perform research on commonly used ridge vent products to better determine the causes of ridge vent failure and develop solutions. Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. 40 FL-17b Vinyl siding manufacturers, insurance organizations, and other stakeholders should continue research and investigations of the appropriate pressure equalization factor for vinyl siding. 41 FL-17c The FBC and FBCR should be revised to require vinyl siding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers and building owners should consider damage to other building owners should consider damage to other buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18b As appropriate, designers and building owners should consider damage to other buildings. 44 FL-18c Designers, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); mad FEMA P-424, Design Guide for Improving Scho		37	FI -15d	Owners should determine whether the soffits attached to their
Rigid vent 38 FL-16 Industry groups and academia should perform research on commonly used ridge vent products to better determine the causes of ridge vent failure and develop solutions. Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. 40 FL-17b Vinyl siding manufacturers, insurance organizations, and other stakeholders should continue research and investigations of the appropriate pressure equalization factor for vinyl siding. 41 FL-17C The FBC and FBCR should be revised to require vinyl siding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18b As appropriate, designers and building owners should consider damage to other buildings from high-wind events as vulnerabilities that should be addressed in their similar undamaged buildings. 44 FL-18c Designers, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthqu		•••		house are "floated." and, if so, take appropriate mitigating
Rigid vent 38 FL-16 Industry groups and academia should perform research on commonly used ridge vent products to better determine the causes of ridge vent failure and develop solutions. Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. 40 FL-17b Vinyl siding manufacturers, insurance organizations, and other stakeholders should continue research and investigations of the appropriate pressure equalization factor for vinyl siding. 41 FL-17c The FBC and FBCR should be revised to require vinyl siding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18b As appropriate, designers and building owners should consider damage to other buildings from high-wind events as vulnerabilities that should be addressed in their similar undamaged buildings. 44 FL-18c Designers, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, <td></td> <td></td> <td></td> <td>actions.</td>				actions.
Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. 40 FL-17b Vinyl siding manufacturers, insurance organizations, and other stakeholders should continue research and investigations of the appropriate pressure equalization factor for vinyl siding. 41 FL-17c The FBC and FBCR should be revised to require vinyl siding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18b As appropriate, designers and building owners should consider damage to other buildings from high-wind events as vulnerabilities that should be addressed in their similar undamaged buildings. 44 FL-18c Designers, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes,	Rigid vent	38	FL-16	Industry groups and academia should perform research on
Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. 40 FL-17b Vinyl siding manufacturers, insurance organizations, and other stakeholders should continue research and investigations of the appropriate pressure equalization factor for vinyl siding. 41 FL-17c The FBC and FBCR should be revised to require vinyl siding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18b As appropriate, designers and building owners should consider damage to other buildings from high-wind events as vulnerabilities that should be addressed in their similar undamaged buildings. 44 FL-18c Designers, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FE				commonly used ridge vent products to better determine the
Wall coverings 39 FL-17a FEMA and FDEM should consider submitting a code change proposal to the FBC requiring exterior wall covering inspections. 40 FL-17b Vinyl siding manufacturers, insurance organizations, and other stakeholders should continue research and investigations of the appropriate pressure equalization factor for vinyl siding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18b As appropriate, designers and building owners should consider damage to other buildings from high-wind events as vulnerabilities that should be addressed in their similar undamaged buildings. 44 FL-18c Designers, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes,				causes of ridge vent failure and develop solutions.
Image: state in the second state is the second state in the second state in the second state is the second state in the second state in the second state in the second state is the second state in the second state in the second state is the second state in the second state is the second state in the second state in the second state is the second state in the second state is the second state in the second state is the second state in the second state in the second state is the sec	Wall coverings	39	FL-17a	FEMA and FDEM should consider submitting a code change
40 FL-17b Vinyl siding manufacturers, insurance organizations, and other stakeholders should continue research and investigations of the appropriate pressure equalization factor for vinyl siding. 41 FL-17c The FBC and FBCR should be revised to require vinyl siding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18b As appropriate, designers and building owners should consider damage to other buildings from high-wind events as vulnerabilities that should be addressed in their similar undamaged buildings. 44 FL-18c Designers, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School S				proposal to the FBC requiring exterior wall covering inspections.
stakeholders should continue research and investigations of the appropriate pressure equalization factor for vinyl siding. 41 FL-17c The FBC and FBCR should be revised to require vinyl siding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18b As appropriate, designers and building owners should consider damage to other buildings from high-wind events as vulnerabilities that should be addressed in their similar undamaged buildings. 44 FL-18c Designers, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School		40	FL-17b	Vinyl siding manufacturers, insurance organizations, and other
41 FL-17c The FBC and FBCR should be revised to require vinyl siding be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18b As appropriate, designers and building owners should consider damage to other buildings. 44 FL-18c Designers, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds (20				stakeholders should continue research and investigations of the
41 FL-17C The FBC and FBC should be revised to require viny stung be labeled to provide traceability to the manufacturer and product. Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18b As appropriate, designers and building owners should consider damage to other buildings from high-wind events as vulnerabilities that should be addressed in their similar undamaged buildings. 44 FL-18c Designers, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, floods, and High Winds (2007b);		11		The FBC and FBCD should be revised to require visual siding.
Vulnerabilities assessment 42 FL-18a Designers and building owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18b As appropriate, designers and building owners should consider damage to other buildings from high-wind events as vulnerabilities that should be addressed in their similar undamaged buildings. 44 FL-18c Designers, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes,		41	FL-17C	The FBC and FBCR should be revised to require viriyi sidility be
42 FL-10d Designeris and balance owners should conduct a comprehensive vulnerability assessment as described in Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project. 43 FL-18b As appropriate, designers and building owners should consider damage to other buildings from high-wind events as vulnerabilities that should be addressed in their similar undamaged buildings. 44 FL-18c 44 FL-18c Designers, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P- 424, Design Guide for Improving School Safety in Earthquakes,	Vulnerabilities assessment	42	FL-18a	Designers and building owners should conduct a
Hurricane Michael in Florida Recovery Advisory 1, Successfully Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project.43FL-18bAs appropriate, designers and building owners should consider damage to other buildings from high-wind events as vulnerabilities that should be addressed in their similar undamaged buildings.44FL-18cDesigners, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P- 424, Design Guide for Improving School Safety in Earthquakes,		72	1 = 10a	comprehensive vulnerability assessment as described in
Retrofitting Buildings for Wind Resistance (in FEMA P-2077, 2019d) before beginning a wind retrofit project.43FL-18bAs appropriate, designers and building owners should consider damage to other buildings from high-wind events as vulnerabilities that should be addressed in their similar undamaged buildings.44FL-18cDesigners, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P- 424, Design Guide for Improving School Safety in Earthquakes,				Hurricane Michael in Florida Recovery Advisory 1. Successfully
2019d) before beginning a wind retrofit project.43FL-18b43FL-18bAs appropriate, designers and building owners should consider damage to other buildings from high-wind events as vulnerabilities that should be addressed in their similar undamaged buildings.44FL-18c44FL-18c44FL-18c577, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P- 424, Design Guide for Improving School Safety in Earthquakes,				Retrofitting Buildings for Wind Resistance (in FEMA P-2077,
 FL-18b As appropriate, designers and building owners should consider damage to other buildings from high-wind events as vulnerabilities that should be addressed in their similar undamaged buildings. FL-18c Designers, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P-424, Design Guide for Improving School Safety in Earthquakes, 				2019d) before beginning a wind retrofit project.
damage to other buildings from high-wind events as vulnerabilities that should be addressed in their similar undamaged buildings.44FL-18cDesigners, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P- 424, Design Guide for Improving School Safety in Earthquakes,		43	FL-18b	As appropriate, designers and building owners should consider
vulnerabilities that should be addressed in their similar undamaged buildings.44FL-18cDesigners, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P- 424, Design Guide for Improving School Safety in Earthquakes,				damage to other buildings from high-wind events as
44FL-18cDesigners, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P- 424, Design Guide for Improving School Safety in Earthquakes,				vulnerabilities that should be addressed in their similar
44FL-18cDesigners, building owners, and operators of critical facilities should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P- 424, Design Guide for Improving School Safety in Earthquakes,			_	undamaged buildings.
should refer to FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P- 424, Design Guide for Improving School Safety in Earthquakes,		44	FL-18c	Designers, building owners, and operators of critical facilities
Facility Safety from Flooding and High Winds (2007a); FEMA 577, Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds (2007b); and FEMA P- 424, Design Guide for Improving School Safety in Earthquakes,				should refer to FEMA 543, Design Guide for Improving Critical
Earthquakes, Floods, and High Winds (2007b); and FEMA P- 424, Design Guide for Improving School Safety in Earthquakes,				Facility Satety from Flooding and High Winds (200/a); FEMA
424, Design Guide for Improving School Safety in Earthquakes,				5/1, Design Guide for Improving Hospital Safety In
				Latinquakes, Floous, and Fight Willus (20070); and FEIVIA P-
Floods, and High Winds (2010c) for additional quidance and				Floods and High Winds (2010c) for additional guidance and

Recommendation Scope	Nu	mber	FEMA P-2077 Recommendations
			best practices for protecting critical facilities from flooding and high winds.
	45	FL-19a	Critical facilities that do not meet the FBC requirements for a Risk Category IV building should not be designated as essential facilities to support continuity of operations nor be occupied during a hurricane.
	46	FL-19b	Owners and authorities having jurisdiction with facilities that present a life-safety threat to occupants during a high-wind event or that need "near absolute protection" or life safety protection should consider designing and constructing a FEMA P-361–compliant safe room or ICC 500–compliant storm shelter for people to take shelter in during a storm.
	47	FL-19c	FDEM should consider delivering training on FEMA P-361, Safe Rooms for Tornadoes and Hurricanes: Guidance for Community and Residential Safe Rooms (2015c), safe room design, construction, and operations and maintenance.
	48	FL-20	The State of Florida should re-evaluate planning factors and considerations used to estimate hurricane evacuation shelter (HES) "demand in people," so counties have adequate and more appropriate HES capacity during future hurricanes.
	49	FL-21a	The State of Florida and FDEM should consider re-evaluating their policies, procedures, and requirements for assessments of existing spaces for use as HES.
	50	FL-21b	The State of Florida and FDEM should consider re-evaluating EHPA criteria and re-assess safety of existing EHPAs, particularly those designed prior to the 6th Edition FBC (2017).
	51	FL-22	Critical facility owners and operators should perform a vulnerability assessment of their structures in comparison to the FBC Risk Category IV threshold to determine their risks and vulnerabilities, and a best path forward for mitigating them.
Wind driven rain	52	FL-23a	Designers should properly design rooftop equipment anchorage per the recommendations in Hurricanes Irma and Maria in the U.S. Virgin Islands Recovery Advisory 2, Attachment of Rooftop Equipment in High-Wind Regions (in FEMA P-2021, 2018c), and contractors should properly implement the anchorage design to prevent blow-off.
	53	FL-23b	Copings and edge flashings should comply with ANSI/SPRI/FM 4435/ES-1, Test Standard for Edge Systems Used with Low Slope Roofing Systems, to prevent blow-off.
	54	FL-23c	In high-wind regions, designers should provide an enhanced closure detail for hip and ridge closures on metal panel roofs, and contractors should take special care in properly installing them.
	55	FL-23d	Designers, contractors, and inspectors should place more emphasis on proper soffit installation to limit wind-driven rain.
	56	FL-23e	To help prevent entry of wind-driven rain into the building, designers should specify weather-stripping for, as well as consider designing vestibules at, exterior doors.
	57	FL-23f	FEMA Building Science should incorporate best practices for minimizing water infiltration into buildings from wind-driven rain into its relevant publications.
Screen Shutter	58	FL-24a	The task committee for ASTM E1886, Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials, should consider revising the

Recommendation Scope	Nu	mber	FEMA P-2077 Recommendations
			standard to include the evaluation of the potential for the shutter
			assembly to unlatch during a storm.
	59	FL-24b	Existing glazing assemblies that have inadequate wind
			pressure or wind-driven rain resistance should be replaced with
			new assemblies rather than being retrofitted with shutters.
	60	FL-24c	The task committee for ASTM E1886 should add corrosion
			criteria to the standard to help enable shutters to perform as
			intended over their useful life.
	61	FL-24d	The task committee for ASTM E1886 should evaluate the
			current perpendicular angle specifications for impacting a
			shutter during testing for its adequacy.
Standing seam metal roof	62	FL-25a	Designers should specify, and contractors should properly
panel			install, standing seam metal panel systems that have been
			tested in accordance with ASTM E1592, Standard Test Method
			for Structural Performance of Sheet Metal Roof and Siding
			Systems by Uniform Static Air Pressure Difference.
	63	FL-25b	Designers should specify, and contractors should install, a root
			deck with a secondary roof membrane for critical facilities
	0.4		designed with structural standing seam metal roof panels.
Membrane roof	64	FL-26	Designers should adequately design, and contractors should
	05		properly install, roof systems.
URM walls	65	FL-27	Owners and operators of buildings with unreinforced masonry
			walls should include the toppling risk of these walls during high-
			wind events in vulnerability assessments and should mitigate
Drielesseneen	<u> </u>		the risk.
Brick veneer	66	FL-28a	Building owners should have a vulnerability assessment
			performed for their existing building to ensure brick veneer is
	67		property attached.
	07	FL-200	Design professionals and contractors should improve
			installation of blick veneer in high-wind regions for new
Extorior Insulation and	68		Designers should consider specifying a more reduct wall
Extend insulation and	00	FL-29	accombly than Exterior Inculation and Einish System for new
			critical facilities
Roof aggregate	69	FL-30	The FBC should provide more specific criteria with restrictions
			on how, when, and where roof aggregate can be used.

APPENDIX D: HURRICANE MICHAEL IN THE AREA OF MEXICO BEACH, FL (KENNEDY ET AL. 2020)

1	
2	Hurricane Michael (2018) in the Area of Mexico Beach, Florida
3	
4	
5	Andrew Kennedy ¹ , Andrew Copp ² , Matthew Florence ³ , Anderson Gradel ⁴ , Kurtis Gurley ⁵ , Matt
6	Janssen ⁶ , James Kaihatu ⁷ , Douglas Krafft ⁸ , Patrick Lynett ⁹ , Margaret Owensby ¹⁰ , Jean-Paul
7	Pinelli ¹¹ , David O. Prevatt ¹² , Spencer Rogers ¹³ , David Roueche ¹⁴ , Zachariah Silver ¹⁵
8	
9	

¹ Professor, Department of Civil & Environmental Engineering, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556. Email: <u>andrew.kennedy@nd.edu</u>

² Student, Department of Civil & Environmental Engineering, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556. Email: <u>acopp@nd.edu</u>

³ Student, Department of Civil and Environmental Engineering, Virginia Tech., 2000 Patton Hall, Blacksburg, VA 24061. Email: <u>matthf6@vt.edu</u>.

⁴ Student, Department of Civil & Environmental Engineering, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556. Email: <u>agradel@nd.edu</u>.

⁵ Professor, Engineering School of Sustainable Infrastructure & Environment, University of Florida, 365 Weil Hall, Gainesville FL 32611. Email: <u>kgurl@ce.ufl.edu</u>.

⁶ Student, Davidson Laboratory, Stevens Institute of Technology. Castle Point on Hudson, Hoboken, NJ 07030. Email: mjanssen@stevens.edu

⁷ Professor, Department of Civil & Environmental Engineering, Texas A&M University, 3136 TAMU, College Station Texas, 77843-3136. Email: <u>jkaihatu@civil.tamu.edu</u>.

⁸ Research Engineer, Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS 39180. Email: <u>Douglas.R.Krafft@usace.army.mil</u>.

⁹ Professor, Department of Civil & Environmental Engineering, University of Southern California, 3620 South Vermont Ave., Los Angeles, CA 90089. Email: <u>plynett@usc.edu</u>.

¹⁰ Research Engineer, Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS 39180. Email: <u>Margaret.B.Owensby@erdc.dren.mil</u>.

¹¹ Professor, Mechanical and Civil Engineering, Florida Tech, 150 W. University Blvd. Melbourne, FL 32901. Email: <u>pinelli@fit.edu</u>.

¹² Associate Professor, Engineering School of Sustainable Infrastructure & Environment, University of Florida, 365 Weil Hall, Gainesville FL 32611. Email: <u>dprev@ce.ufl.edu</u>.

¹³ Coastal Construction Specialist, North Carolina Sea Grant, UNC-W Center for Marine Science, 5600 Marvin Moss Lane. Wilmington NC 28409. Email: <u>rogerssp@uncw.edu</u>.

¹⁴ Assistant Professor, Department of Civil Engineering, Auburn University, 1301 Shelby Center, Auburn, AL 36849. Email: <u>dbr0011@auburn.edu</u>.

¹⁵ Postdoctoral Researcher, Department of Civil & Environmental Engineering, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556. Email: <u>zsilver.nd@gmail.com</u>.

10 Abstract

11 Category 5 Hurricane Michael made landfall near Mexico Beach, Florida on October 9, 2018 12 with measured high water marks reaching 7.2m NAVD88. The town itself received great 13 damage, with many areas destroyed down to foundations. Here, we document the storm and its 14 effects on the greater Mexico Beach area: hazard, structural damage, and their relationships. 15 Wave and surge damage was near-total for low-lying properties, but damage decreased greatly 16 with increasing elevation. Major wave and surge damage was noted in FEMA X-Zones, which 17 are out of the 100 year floodplain, and it is suggested that the 100 year storm is a deficient 18 measure for categorizing flood risk.

19

20 Introduction

21 Hurricane Michael made landfall 13km (7 nautical miles, nm) west of Mexico Beach, Florida, 22 USA at 18:00 UTC (13:00 local) on October 9, 2018 as a Category 5 storm with maximum one 23 minute sustained winds of 140 knots (72m/s), and a minimum central pressure of 91.9 kPa 24 (Beven II et al., 2019). Figure 1-a shows Michael's track and strength as it underwent rapid 25 intensification before landfall, strengthening from Category 2 to 4 on the Saffir-Simpson scale 26 within one six-hour period. Further intensification to Category 5 at landfall made Hurricane 27 Michael the strongest storm ever recorded in the Florida Panhandle region. Prior to Michael, the 28 strongest storm in the NOAA HURDAT2 database that made landfall within 65 nautical miles 29 (nm) of Mexico Beach was Category 3 Hurricane Eloise (1975), which made landfall with 110 30 knot winds (57m/s) 51nm (93km) west of Mexico Beach near Miramar Beach, while unnamed 31 1851, 1877, and 1894 storms made landfall in the region with 100 knot, 100 knot, and 105 knot

intensities respectively (51, 51, 54m/s). Most recently, Hurricane Kate (1985) was an 85 knot
Category 2 (44m/s) storm that made landfall almost directly over Mexico Beach (Landsea and
Franklin, 2013). Thus, Michael was stronger by far than any that local residents had experienced
in their lifetimes, and was one of the strongest hurricanes by central pressure to make landfall in
the continental United States (Beven II et al., 2019).

37 Michael generated catastrophic damage, with strong winds across the entire region and high 38 storm surge and waves over the smaller area centered on Mexico Beach. Post-storm, a team of 39 researchers travelled to the area to record perishable records of the waves, surge and damage 40 from October 13-15, and November 1-8, 2018. This paper is a partial record of observations, 41 interpretations, conclusions, and recommendations made by the team. For the purposes of this 42 paper, we define the "Area of Mexico Beach" to include all coastline from 85.434°W to 43 85.356°W (Figure 1-b). This includes not only the town of Mexico Beach proper in Bay County, 44 FL, but also contiguous areas in Gulf County as development is essentially continuous over the 45 region.

46

47 Wind, Waves, Surge, and Runup

The only in situ instrument measurement of Michael's waves and surge came from the United States Geological Survey (USGS) rapid gauge FLBAY03283, which was mounted to one of the pilings on the Mexico Beach Pier (Byrne Sr., 2019). The deck and almost all of the pilings seaward of the gauge were destroyed, but the gauge itself survived and provided good measurements. Figure 2 shows a time series of the instantaneous water levels (computed using the hydrostatic assumption, and with atmospheric pressure corrections using a nearby non-

54 inundated pressure gauge) measured every 30s on Oct 10, and a 15 minute average of these 55 water levels which will be taken as the surge elevation. Figure 3 shows the overall gauge 56 location in Mexico Beach, while Figure 4a shows a photograph of the gauge location post-storm. 57 Waves and surge began to rise consistently above the gauge elevation of 2.12m NAVD88 (North 58 American Vertical Datum of 1988, which is within 2cm of the mean tide level in this area) just 59 before 17:00 UTC (12:00 local), reaching a surge peak of 5.16m NAVD88, and a maximum 60 instantaneous wave crest elevation of 6.28m (using the hydrostatic assumption) just before 61 17:30. These peaks were very short-lived, and by 19:00 only a few small wave crests were high enough to even reach the gauge. Realistically, most wave and surge damage likely occurred in 62 63 the 1.5 hour period between 17:00 and 18:30 UTC (12:00-13:30 local). This maximum wave 64 crest of 6.28m (20.6ft) NAVD88 occurred in a National Flood Insurance Program (NFIP) 4.27m 65 (14ft) VE-Zone (highest risk in 100 year floodplain); no location in Mexico Beach (other than 66 the pier in the ocean) had higher design elevations than this, while many inundated areas had 67 much lower design elevations, and/or were in the lower risk AE zones (moderate wave action in 68 100 year floodplain) or in Zone X (500 year floodplain) as seen in Figure 3. Thus, the conditions 69 during Michael at Mexico Beach greatly exceeded design conditions for the 100 year flood plain. 70 Because water levels were only measured at 30s intervals, no frequency information can be 71 obtained about wave properties, but it is still possible to use the hydrostatic assumption to 72 estimate time series of wave height at the pier. This is shown in Figure 2b, and was computed using $H_s = 4\sigma_w$ (Dean and Dalrymple, 1991; Kennedy et al, 2011) where σ_w is the standard 73 74 deviation of water surface elevation over a 15 minute period, after subtracting the filtered surge time series. Heights reached a maximum of just over $H_s \approx 2 \text{ m}$ very near to the time of peak 75 76 surge when mean water depths were likely greater than 3m above ground elevation (we do not

know the ground elevation during the storm so it is not possible to say with certainty), so these were highly nonlinear waves capable of causing great damage to structures and infrastructure. At times when the wave troughs could be lower than the gauge elevation, wave height values are lower bounds, and Figure 2b demarcates these approximate times.

81 Although no other instrument records exist in the Mexico Beach area, both the present team and 82 separately the United States Geological Survey took numerous high water marks (HWM). Table 83 1 lists present data, while Open-file Report 2019-1059 references the USGS data as a freely-84 available download (Byrne Sr., 2019); both show a picture generally consistent with the water 85 level gauge. Figure 3 shows measured water levels from high water marks, and the location of 86 the USGS water level gauge. Wave runup elevations were taken near the tops of the main runup 87 debris piles, and not the height of scattered debris which might have slightly higher elevations. 88 Similarly, interior water marks were taken at the highest clear indication, and ambiguous 89 waterlines were ignored. The water levels shown here are fairly conservative, and therefore it 90 remains quite possible that surge and/or runup exceeded the values presented in Table 1. Figure 4 91 shows examples of wave runup and high water marks, as well as the location of the USGS gauge 92 at the Mexico Beach Pier.

High water mark elevations given in Figure 3 demonstrate both their changes in space, and overall consistency. In the northwestern area of Mexico Beach, flow depths were large from the beach to US98, with many measurements of 5-6m NAVD88. All of these high water marks were identified on surviving structures; no high water marks were found anywhere near the original shoreline, where waves were almost certainly larger. Moving southeast along the coastline, high water marks become significantly lower at around 85.4°W, at around 4-5m NAVD88. This is likely because measurements here were quite far inland. However, high water mark elevations

100 increase strongly at around 85.393°W, where the beach is very narrow, and there are high ground 101 elevations just across US 98. Runup here exceeded 7m in several locations as evidenced by 102 undisturbed runup debris, with a maximum measured elevation of 7.2m NAVD88 (Figure 3b)). 103 Moving farther southeast along the coast, HWM elevations decreased almost monotonically, 104 with all HWM east of 85.36°W having elevations under 4m NAVD88. This is both farther from 105 the storm center and the beginning of the area where sheltering from the St. Joseph Peninsula is 106 important, so the decrease is not unexpected. Still, these maximum elevations of 4-7m NAVD88 107 in the vicinity of Mexico Beach remain extreme, and sufficient to deeply inundate much of the 108 area.

109 Nearshore Erosion

110 Figure 5 shows a small but typical section of beach, and the erosion that occurred during

111 Michael. Post-storm (October-November, 2018, US Army Corps of Engineers) and pre-storm

112 lidar (April-May 2017, Northwest Florida Water Management District) are used to create a

113 difference map, with positive numbers showing locations of erosion. Both datasets have standard

114 errors listed as 10cm, which are much lower than the differences seen pre-to post storm. Aside

115 from Michael, there were no major storms in the region in between survey periods.

The major difference in pre-storm and post-storm onshore data arises from the complete erosion of the coastal dune system, with up to several meters of elevation loss. Areas of deposition are seen landward in some locations, and represent debris piles generated from more seaward houses and other moveable objects. Figure 6 shows the two transects identified in Figure 5 before and after the storm, which clearly demonstrate the dune erosion. The dune crest elevations of around 4m in Transect 1 may also be compared to the peak surge value of 5.16m NAVD88 and peak wave crest of 6.28m NAVD88 measured at the nearby pier. These measured water levels greatly

123 exceed the dune crest elevations, placing the system well into the inundation regime (Sallenger, 124 2000) where sediment transport increases greatly and heavy dune erosion is expected. Once dune 125 erosion was complete, large waves would have been able to penetrate inland with relatively little 126 to impede them before encountering the many structures located close to the shoreline. Transect 127 2 provides a second example with no large fronting dune, showing little overall erosion or 128 accretion in the immediate beachfront area. However, both transects were chosen to intersect 129 large debris piles, which were found in many inundated locations and will be assessed in more detail in a following section. These debris piles showed large increases in elevation to the tops of 130 131 debris; however, actual 'ground' elevations underneath the debris had little to no erosion or 132 accretion.

133

134 Infrastructure Damage

135 Infrastructure damage in the Mexico Beach region was severe and occurred from both wind and 136 waves/surge. Critical facilities such as the Mexico Beach police and fire station were located 137 well inland of US98 and did not experience significant damage from storm surge, but wind 138 damage was observed. Fortunately, no hospitals or urgent care facilities were located in Mexico 139 Beach, but the nearby larger regional center of Panama City contains many such facilities. Other 140 critical infrastructure in Mexico Beach such as roads, telecommunication and power 141 infrastructure experienced various levels of impacts from both surge and wind, and there was no 142 power, water, gas, or sewage available during the team's visits. Cellular service was restored 143 rather quickly and was available throughout the town during reconnaissance.

Researchers noted partial washout of approximately 600 m of US98 in various locations between the western edge of Mexico Beach and HWY386 (a distance of approximately 5 km). A small vehicular bridge (span of ~15 m) across an inlet between 8th and 9th Streets collapsed, but a temporary bridge had already been installed by the time the damage assessments were conducted. Roueche et al (2018) provide additional information on infrastructure impacted by Hurricane Michael.

150

151 Structural Damage

152 With very few exceptions, damage from Hurricane Michael's wind, waves, and surge ranged 153 from severe to catastrophic in the area of Mexico Beach. Many ground elevations near the 154 shoreline, particularly in the western section of the study region, were 2.5-3m NAVD88, 155 meaning that inundation depths were great enough that large damaging waves could reach 156 structures once dunes had eroded. This resulted in areas where entire blocks of buildings were 157 destroyed down to their foundation slabs. More inland areas with smaller waves were not 158 damaged as completely, but still suffered significant inundation to walls, floors, and contents. 159 On the other hand, newer residential structures built according to the latest building code, and far 160 enough inland or at high enough elevation to escape waves and surge, generally performed 161 relatively well in spite of the extreme winds. Some newer and well-elevated neighborhoods 162 suffered by-and-large little more than modest fenestration and roof cover damage. However, 163 older structures were much more prone to severe wind damage, including significant roof cover 164 and roof decking loss, which cascades into extreme water ingress and interior damage.

165 Near to the shoreline, the only structures that did not experience major damage were well-built 166 elevated structures, and even these generally lost utility connections and often staircases (e.g. 167 Figure 8c), and were prone to interior water damage from loss of soffits and damaged 168 fenestration. Figures 7-8 show examples of damage observed in the Mexico Beach area. Failure 169 modes included destruction of the entire structural frame (7a), structures detaching from 170 foundations either at grade (7b), or on top of piles (8a), loss of roof cover (7c), piled foundation 171 loss of capacity or breakage (7d, 8a), wave damage to exposed structural components (8b), and 172 erosional failures of foundations and associated components (8d). Observed structural failures 173 are typical of large wave and surge events (Robertson et al., 2007; Tajima et al., 2014; Tomiczek 174 et al., 2014; Hatzikyriakou et al., 2016) where inundation depths are large and waves can 175 generate destructive loading on exposed structures.

176 To evaluate surge and wave induced damage patterns, it is helpful to examine aggregate damage 177 results over the Mexico Beach area. Many different researchers in the field gave preliminary 178 structural assessments. These included photographs, elevations, descriptions, and damage ratings 179 by component and overall. Separate post-reconnaissance researchers used the field photographs 180 to reassess the assessments for consistency, and to translate damage ratings to those of Tomiczek 181 et al. (2017). For a given property, the individual performance of various structural components 182 was evaluated to produce an overall rating between DS0 (no observed damage) and DS6 183 (structure removed from foundation) using the rubric in Table 2. Roof damage was neglected in 184 this scheme, as roof damage to standing structures was almost certainly caused by extreme wind. 185 Elevations of lowest horizontal structural members (LHMs) in relation to wave crest elevations 186 are extremely important to structural survival. These elevations were obtained using lidar-based 187 bare earth DEMs taken post-Michael to give ground elevations in NAVD88 datum, which were

added to LHM heights above grade, either measured in situ with rods or more approximately
using Google Street View-based LHM height estimates (e.g. Tomiczek et al., 2017). Final LHMs
reported here are in NAVD88 datum. Year of construction was taken from online county
resources and offline property databases. Because the region had significant changes in
inundation moving NW-SE, the overall coastline was divided into subareas as shown in Figure 9:
either four (a-d) or two (N-S) depending on the properties considered.

194 Seaward of US98, there were four major types of construction: (a) Older single family, at-grade 195 homes made of concrete masonry units (CMUs) or brick; (b) Connected townhouse-type 196 structures, typically timber frame; (c) Pile-elevated wood-framed single family homes and small 197 businesses; (d) Pile-elevated multifamily residential or commercial construction. As might be 198 expected, at-grade construction performed very poorly near the shore, with frequency of survival 199 increasing with increasing distance inland. A post-storm assessment was made for all structures 200 and remains of structures that could be identified south of US98 between the western edge of Mexico Beach and the small bridge just west of 8th street (85.4028°W), and a less-complete 201 202 assessment farther east to around 85.35°W. In many cases, multifamily units were treated as one 203 structure when performance was similar, but individual units were also separated out when 204 differences were noted.

Figure 10 shows overall surge and wave induced damage ratings for all structures surveyed by the team in the Mexico Beach area, divided into the four subregions in Figure 9. It is clear that in area (a) (farthest NW), large areas near the shoreline suffered complete damage, while the farthest SE section (d) showed areas near the shoreline with damage, but not anywhere near the extent of (a), with (b-c) demonstrating intermediate levels of damage.

210 Damage state was found to be a strong function of structural elevation as shown in Figure 11, 211 particularly close to the shoreline. This is not at all surprising, as structures at higher elevations 212 may encounter waves and surge for a shorter length of time, or not at all if they are sufficiently 213 elevated. Structures built at grade were almost universally destroyed in the most severe 214 conditions near the shoreline (DS 6), and were largely older single family houses. Structures at 215 higher elevations demonstrated much higher survivability, although many of them still sustained 216 significant damage. Farther inland, structures experienced an increased chance of survival both 217 from the higher ground elevations and the dissipating wave heights, but damage still tended to be 218 severe: very few structures surveyed had damage states less than DS2. Subregions c-d (SE 219 Mexico Beach) showed lower damage states inland of US98, which will be explored in more 220 detail later.

221 There were examples of good design and practice: the most impressive structural survival was 222 the famous "Sand Palace" house built in 2018 and shown in Figure 8(c). Although it is in the 223 first row of houses near the region of worst surge and damage, the Sand Palace only had damage 224 to: (i) Utilities and local HVAC destroyed; (ii) Exterior staircase and lower storey breakaway 225 walls and interior destroyed; (iii) A cracked window on the top floor; (iv) One electrical outlet on 226 the top floor ceiling popped out of its socket due to the pressure difference between the house 227 interior and attic; (v) Damage to parking slab and pavers; (vi) Minor water intrusion; (vii) One 228 porch ceiling damaged. No roof damage was recorded. By the time of the team's visit, the 229 owners had installed solar panels and batteries to provide electricity and with the exception of 230 town utilities were fully functional. The Sand Palace was in DFIRM Zone AE, elevation 12ft 231 (3.66m) NAVD88, while the measured elevation of the lowest horizontal structural member 232 (LHM) was 6.3m (20.7ft) NAVD88. This elevation almost exactly matched the largest measured

233 wave elevation of 6.28m NAVD88 measured at the nearby pier. Because the pier was slightly 234 seaward of the Sand Palace, wave crest elevations at the house would likely have been slightly 235 lower. Thus, largest wave crests during the storm came close to, or barely touched, the LHM, 236 and wave loads were certainly much lower than those experienced by houses at lower elevation. 237 As reported, the Sand Palace cost approximately 15-20% additional per square foot when 238 compared to standard construction practices (Dal Pino, 2019). After Michael, and compared to 239 its neighbors, this additional cost seems very well spent. This case study also demonstrates that 240 community resilience to natural hazards is only effective when the plurality of infrastructure are 241 similarly mitigated. That is, the Sand Castle is a win for the owners, but the community they 242 return to requires long term recovery efforts.

243

244 Damage by FEMA DFIRM Zone

245 Consideration of damage state compared to the structural elevation shows interesting patterns. 246 General risk categories may be given by the Federal Emergency Management Agency (FEMA) 247 definitions for their Digital Flood Insurance Rate Maps (DFIRMS). Zones VE and AE are 248 designated Special Flood Hazard areas, and flood insurance is "mandatory with mortgages from 249 federally regulated or insured lenders". VE Zones are areas "defined by the 1% annual chance 250 (base) flood limits (also known as the 100-year flood) and wave effects 3 feet or greater". 251 (https://www.fema.gov/media-library-data/20130726-1541-20490-5411/frm p1zones.pdf). 252 These areas have the greatest risk from 1 in 100 year surge and waves. One step down from this 253 is the AE Zone. These are defined with Base Flood Elevations (BFEs) "that reflect the combined 254 influence of [100 year] stillwater flood elevations and wave effects less than 3 feet". During 255 Michael, it is clear that surge and waves greatly exceeded the 100 year inundation, and for this

reason we will combine VE and AE zones since both almost certainly experienced largedestructive waves.

258 The X-zone in the Mexico Beach area is, for the purposes of this paper, the region not in the 100 259 year flood plain. In practice, many homeowners take the X-zone as a region with no real hazard, 260 and do not obtain flood insurance. During Michael, the hazard was severe, and Figure 10 shows 261 that very many structures in the X zone were destroyed. Most of these structures were quite old 262 and at low elevations, particularly in NW Mexico Beach. Here, as seen in Figure 10, entire 263 sections of X zones were wiped clean to their foundations. Farther south in subareas c and d, 264 there was much greater frequency of survival and lower damage in X zones. 265 The immediate survival or destruction of a structure is an important safety consideration. Here, 266 destruction is defined by damage category DS6, where the structure is "slabbed"; that is to say it 267 is completely removed from its foundations. Figure 12 shows the probability of slabbing during 268 Michael for aggregated VE-AE zones, and for X Zones. Unsurprisingly, the probability of 269 survival increases strongly with increasing building elevation. Somewhat surprisingly, the 270 probabilities for VE-AE and X zones are almost identical, indicating that structural elevation was 271 the overwhelming factor for survival. Because there was a range of inundation over the Mexico 272 Beach region, this is reflected in the slabbing probabilities. Because Michael so greatly exceeded 273 the 100 year event, the near-coast DFIRM zones behaved as one. We do note that our study 274 looks almost exclusively at structures in the first few hundred meters from shore, and slabbing 275 behavior would certainly be different farther inland.

276 Although all DFIRM zones showed similar slabbing probabilities when aggregated over the

277 entire dataset, there were noticeable North-South differences. As seen in Figure 3, inundation

278 decreased notably at the far southeastern end of the Mexico Beach. There was a corresponding

decrease in the frequency of slabbing, as shown in Figure 13. Structures in the southern area had
a survival probability roughly equivalent to a 1-2m higher structure in the northern portion of
Mexico Beach. Once again, elevation relative to inundation appears to be the defining factor.
The one exception is for elevations of 2-3m in South Mexico Beach, with only 1 structure
measured in this bin and correspondingly low confidence in the 0 probability of slabbing. This
structure was landward of US98 and suffered major damage but remained standing.

285

286 **Debris Generation and Transport**

287 The destruction of structures and infrastructure generated large amounts of debris, much of 288 which was transported inland: Figure 14 shows typical examples of debris and debris piles. 289 These could be quite large at times for both plan area and height above ground, as also seen in 290 transects of Figure 6. At the large scale, this debris comprised entire structures detached from 291 their foundations, cars, boats and other transportable large objects. Debris at the smaller scales 292 included household goods and fractured components of structures and infrastructure. The sheer 293 quantity of debris remaining within the town was large both because of the great destructive 294 scale of the storm, and the rising elevations and intact structures inland which prevented the 295 debris from being washed through as on an inundated barrier island.

Many debris piles or clusters were large enough to be clearly visible on aerial or satellite imagery. For the purposes of this paper, clusters are defined as a contiguous grouping of debris with characteristic length scale of at least 5m, and distinguishable on satellite images. Polygons enclosing clusters were generated manually using judgement, and are shown in Figure 15. In total, 1037 debris clusters were identified, with total plan areas of 28.0ha (69.3 acres). Large

clusters were often seen to be bounded on the landward side by either topographic high
elevations (particularly for runup), intact vegetation (trees and bushes), and structures blocking
further transport. These clusters tended to be composed of floating debris, while heavier masonry

and concrete tended to stay near to their original locations.

304

305 In some cases, such as in Figures 6(a) and 14(a) which show elevations and imagery from the 306 same region, debris clusters had very high heights above ground, and may have been grounded 307 during the storm: i.e., the cluster was higher than water levels and reached the ground, acting as a 308 dam, collecting additional debris, and preventing further transport. Although no systematic study 309 has yet been made, very large clusters not backed by a surviving structure often had large debris 310 objects such as transported houses, roofs, or other large objects as nuclei. Figure 16 shows 311 identified Large Debris Objects (LDOs), defined here as transported intact or semi-intact 312 structural assemblies or whole structures, travel trailers, and recreational vehicles (RVs). 313 Although structures are clear when out of place, trailers and RVs are fundamentally mobile and 314 could have been brought in post-storm but prior to the satellite photograph. These were only 315 counted when tipped over, part of a larger debris cluster, tight against another structure, or in a 316 strange position.

All LDOs originated somewhere and in many cases, it was possible to conclusively determine pre-storm locations, particularly for structures and structural assemblies. Figure 17 shows distances moved by LDOs in the 301 cases where original locations could be identified. The large majority of LDOs moved relatively short distances, with 72% traveling less than 25m, 85% less than 50m, and 94% less than 100m. The longest identified distance travelled by a LDO was 325m for the roof of a house near the beach that was transported into an inland pine forest. Other studies have found that floating objects can travel large distances if unimpeded, with a largely

intact house found to have floated 0.9km from its piled foundations during Hurricane Ike
(Kennedy et al., 2011). Longer distances are very possible, but with increasing distance of travel
also comes increased difficulty of identification. In the present case, pine forests were inland
from almost all development, limiting the potential distance of LDO travel.

328

329 Discussion and Conclusions

330 Mexico Beach was an unfortunate testbed for the effects of waves and surge on a variety of 331 construction types. Maximum water levels exceeded BFEs by several meters, and deep 332 inundation was recorded well past the 100 year floodplain. Inundation elevations from wave 333 runup were greatest on the side of a small hill by the beach, while surge inundation appeared to be largest in the northwestern Mexico Beach. Inundation decreased significantly in southeastern 334 335 Mexico Beach, as this was both farther from the storm landfall and showed the beginnings of 336 sheltering by the St. Joseph Peninsula. Inundation levels were much higher than dune crests, and 337 no dunes survived the storm in the Mexico Beach area. However, severe inundation was local to 338 Mexico Beach, and larger nearby cities like Panama City and Panama City Beach had much 339 lower water levels and correspondingly lower coastal damage.

Damage for low-lying properties near the Mexico Beach coast was near-total, irrespective of construction type or age. Even in the X Zones that are out of the 100 year floodplain, inundation damage was severe, with entire blocks of houses destroyed to their foundations. Many structures in this region were old and at low elevation; many owners did not have flood insurance. Damage decreased greatly with increasing structural elevation, as was expected, and with increasing distance inland. Structures that were not completely destroyed by waves and surge generally had

346 significant wind damage, with severe roof damage typical for older structures not built according 347 to the most recent building code. Interior damage for flooded structures was significant. All 348 utilities were lost during the storm and were slow to recover, with the notable exception of 349 cellular service. The storm generated large amounts of debris transported by waves and surge, 350 and created very large debris piles that generally accumulated against the side of a building, 351 against vegetation, or on a hill slope. This was close to a worst-case scenario for the Mexico 352 Beach area. However, good design and construction was rewarded. By far the most obvious 353 example was the famous "Sand Palace", which survived Michael with relatively minor damage. 354 Some aspects of design and planning deserve more attention. Chief among them is the use of the 355 100 year floodplain to define areas of high risk and low risk. In wind engineering, Category II 356 buildings (the most common type) use a 700 year return period for structural design (McAllister 357 et al., 2018), which is much more severe. Earthquake design return periods for collapse vary 358 depending on what is considered, but may specify a 2,475 year return period or the more severe 359 1% chance or less of collapse in 50 years, equating to a 5000 year collapse event (National 360 Institute of Building Sciences, 2017). Tsunami standards in ASCE7-16 specify a 2% probability 361 of being exceeded in 50 years, or a 2,475 year event (American Society of Civil Engineers, 362 2016). Thus, if a structure is to last 50 years, it has a 40% chance of experiencing at least one 363 design flood event while only a 7% chance of the design wind event, a 2% probability of the 364 design tsunami event, and the same probability or lower of a design earthquake event. For older 365 construction not meeting the 100 year standard, as was found in much of Mexico Beach, the 366 probabilities of failure are much greater. These are extremely bad odds for flood design, and are 367 at the heart of why there is so much repeated damage and losses during storm surge and wave 368 events. Design past the 100 year standard, or even recognition that areas past the 100 year flood

369	plain have a real and non-negligible chance of inundation, damage, and collapse, would represent
370	a fundamental change in outlook for coastal structure design, and one that is sorely needed.
371	Aspects that increased survival and reduced damage probabilities from waves and surge were:
372	1. Structural elevation above the highest observed high water marks, and much above the 100
373	year base flood elevation (BFE),
374	2. Distance inland far enough that wave heights decrease to less damaging levels,
375	3. Attention to details of construction and higher quality building components, including
376	foundations, and building connections. Wind damage was also greatly decreased by high quality
377	roof, window, and framing details, and by adherence to the newest Florida Building Codes.
378	To decrease the chance for a repeat of this scenario, standards far beyond the 100 year flood are
379	necessary. Draft revisions for FEMA Digital Flood Elevation Rate Maps in Bay County, FL
380	(http://portal.nwfwmdfloodmaps.com/esri-viewer/map.aspx?cty=MexicoBeach), show large
381	areas levelled by Michael still remaining in the X-zone (no requirement for flood insurance and
382	stated 0.2% annual chance of flood hazard), with many others in the 9-ft or 10-ft (2.7-3.0m) AE
383	zone. The highest VE-zone elevation in developed areas is 14ft (4.3m), with 12ft (3.7m) VE-
384	zones much more common. No buildings built to minimum required standards in these zones
385	have a realistic probability of surviving Michael's successor.

386

387 Data Availability Statement

388 Damage data that support the findings of this study may be available from the corresponding389 author upon reasonable request.

390

391 Acknowledgements

- 392 This work was performed with funding from the National Science Foundation (grants 1661015,
- 393 1822307, 1841667), the National Institute of Standards and Technology, financial support from
- the Florida Division of Emergency Management Project No. B0021 DEM-HL-00004, the Joint
- 395 Airborne Lidar Bathymetry Technical Center of Expertise, and the Applied Technology Council.
- 396 Their support is gratefully acknowledged.

397

398 References

- American Society of Civil Engineers (2016). Minimum design loads and associated criteria for
 buildings and other structures (7-16). ASCE, Reston, VA, 800pp.
- 401 Beven II, J.L., Berg, R., and Hagen, A. (2019). Hurricane Michael (AL142018). National
- 402 Hurricane Center Tropical Cyclone Report.
- 403 Byrne Sr., M.J. (2019). Monitoring storm tide from Hurricane Michael along the northwest coast
- 404 *of Florida, October 2018.* Open-File Report 2019-1059, United States Geological Survey.
- 405 Hatzikyriakou, A., Lin, N., Gong, J., Xian, S.Y., Hu, X., and Kennedy, A. (2016). "Component-
- 406 based vulnerability analysis for residential structures subjected to storm surge impact from
- 407 Hurricane Sandy". *Natural Hazards Review*, **17**(1), 05015005.
- 408 Dal Pino, J.A. (2019). "The story of a survivor". *Structure*, 26(3), 34-36.
- 409 Dean, R. G., and Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists,
- 410 World Scientific, Singapore, 353p.

- 411 Kennedy, A.B., Rogers, S., Sallenger, A., Gravois, U., Zachry, B., Dosa, M., and Zarama, F.
- 412 (2011). "Building Destruction from Waves and Surge on the Bolivar Peninsula during
- 413 Hurricane Ike," J. Waterway, Port, Coastal and Ocean Eng.-ASCE, 137, 132-141,
- 414 doi:10.1061/(ASCE)WW.1943-5460.0000061.
- 415 Landsea, C. W. and Franklin, J.L. (2013). "Atlantic Hurricane Database Uncertainty and
- 416 Presentation of a New Database Format". *Monthly Weather Review*, 141, 3576-3592.
- 417 McAllister, T.P., Wang, N., and Ellingwood, B.R. (2018). "Risk-informed mean recurrence
- 418 intervals for updated wind maps in ASCE 7-16". *Journal of Structural Engineering*, 144(5),
- 419 06018001.
- 420 National Institute of Building Sciences (2017). *Project 17 Invitational Workshop on Seismic*
- 421 *Hazard Mapping*, April 11, 2017, Burlingame, CA.
- 422 Robertson, I.N., Riggs, H.R., Yim, S.C.S., and Young, Y.L. (2007). "Lessons from Hurricane
- 423 Katrina storm surge on bridges and buildings". Journal of Waterway, Port, Coastal, and
- 424 Ocean Engineering ASCE, 133(6), 463-483.
- 425 Roueche, D.; Cleary, J.; Gurley, K.; Marshall, J.; Pinelli, J.-P.; Prevatt, D.; Smith, D.; Alipour,
- 426 A.; Angeles, K., Davis, B.; Gonzalez, C.; Lenjani, A.; Mulchandani, H.; Musetich, M.;
- 427 Salman, A.; Kijewski-Correa, T.; Robertson, I., Mosalam, K., (2018), "StEER -
- 428 HURRICANE MICHAEL: FIELD ASSESSMENT TEAM 1 (FAT-1) EARLY ACCESS
- 429 RECONNAISSANCE REPORT (EARR)", DesignSafe-CI [publisher], Dataset,
- 430 doi:10.17603/DS2G41M
- 431 Sallenger Jr., A.H. (2000). "Storm Impact Scale for Barrier Islands". Journal of Coastal
- 432 *Research* **16**(3), 890-895.

433	Tajima, Y., Yasuda, T., Pachero, B.M., Cruz, E.C., Kawasaki, K., Nobuoka, H., Miyamoto, M.,
434	Asano, Y., Arikawa, T., Ortigas, N.M. (2014). "Initial report of JSCE-PIC joint survey on the
435	storm surge disaster caused by Typhoon Haiyan". Coastal Engineering Journa, 56(1),
436	1450006.
437	Tomiczek, T., Kennedy, A.B., and Rogers, S.P. (2014). "Collapse limit state fragilities of wood-
438	framed residences from storm surge and waves during Hurricane Ike", J. Waterway, Port,
439	Coastal and Ocean EngASCE, 140(1), 43-55, doi: 10.1061/(ASCE)WW.1943-
440	5460.0000212.
441	Tomiczek, T., Kennedy, A., Zhang, Y., Owensby, M., Hope, M.E., Lin, N., and Flory, A. (2017).
442	"Hurricane damage classification methodology and fragility functions derived from
443	Hurricane Sandy's effects in coastal New Jersey". J. Waterway, Port, Coastal, and Ocean
444	Engineering- ASCE, 143(5), 04017027.
445	
446	

447 **Figure Captions**

448

449 Figure 1. (a) Hurricane Michael's track before and after landfall. Symbol colors denote Saffir-

450 Simpson storm category, and the 25m and 100m depth contours are as indicated. The small

451 magenta inset immediately southwest of the "Mexico Beach" text indicates the study region. (b)

452 The spatial extent of the study location outlined in red, with NOAA post-storm airborne imagery

453 overlying a satellite-based background.

454

Figure 2. Time series of water surface elevation (m NAVD88) from USGS gauge FLBAY03283
at the Mexico Beach Pier. (a) (—) Unfiltered water level taken every 30 seconds; (—) Moving
15 minute average water level. (b) Significant wave height at pier. The shaded area represents
the approximate time when the gauge did not go dry in wave troughs. Location is shown in
Figure 3.

460

461 Figure 3. High water marks in the vicinity of Mexico Beach. (green) present measurements;
462 (black) USGS; (red) peak elevation from USGS sensor at pier. FEMA flood zones are as shown
463 in the legend. Highway US98 is the solid black line close to the coast, and the NOAA shoreline
464 is shown as a dashed line. Elevations are given in NAVD88 datum.

465

466 Figure 4. Examples of water level measurements. (a) Location of USGS water level gauge at the

467 Mexico Beach Pier, with bracket location circled; (b) Highest wave runup location; (c-d)

468 Examples of interior watermarks.

469

470 Figure 5. Erosion example showing elevations in NAVD88 datum (a) Before; (b) After; and (c)

471 Difference. Erosion is shown as positive and deposition as negative. Elevations for transects 1

472 and 2 are shown in Figure 6.

473 Figure 6. Before storm (-) and post-storm (- -) bare-earth elevation transects in NW Mexico
474 Beach from the nominal shoreline to Hwy 98. Locations for Transects 1-2 are shown in Figure
475 5.

476

Figure 7. Examples of structural damage. (a) Complete destruction of at-grade house (DS6); (b)
At-grade house detached from its foundations by waves and surge (DS6); (c) Damaged at grade
house (note sheets of asphalt detached from road) (DS3); (d) Failure of prestressed concrete
piling (DS6).

481

Figure 8. Examples of structural damage. (a) Complete failure of pile-elevated house (DS6); (b)
Severe damage to beachfront pile-elevated row houses (DS5); (c) Minor damage to "Sand
Palace" (DS3); (d) Scour and partial failure of concrete floor pad underneath pile-elevated house
(DS5).

486

Figure 9. Locations of subregions a-d, and N-S used in Figures 10,13,15,16. The red asterisk
shows the eastern end of the region where all structures seaward of US98 were evaluated for
damage.

490

491 Figure 10. Surge and wave induced structural damage states as in Tomiczek et al. (2017). (black

492 square) DS0; (green diamond) DS1; (cyan +) DS2; (magenta diamond) DS3; (blue x) DS4;

493 (yellow triangle) DS5; (red *) DS6. (a) Subregion a; (b) Subregion b; (c) Subregion c; (d)

494 Subregion d. FEMA DFIRM flood zones are as labelled.

495

496 Figure 11. Damage state vs elevation of lowest horizontal structural member in m NAVD88, and497 distance from shoreline in the subregions a-d as shown in Figure 9.

498

Figure 12. Slabbing probabilities as a function of elevation over the Mexico Beach region for
(triangle) Combined VE and AE zones; (circle) X Zone. The shaded region shows the range of
observed high water marks.

502

Figure 13. Slabbing probabilities for all flood zones combined as a function of location.
(triangle) North Mexico Beach; (circle) South Mexico Beach. The shaded region shows the range
of observed high water marks.

506

507 Figure 14. Examples of debris transport and deposition. (a) Western Mexico Beach (photograph 508 by NOAA), showing large debris piles; (b) Boats and terrestrial debris; (c) Waverunner rental 509 shack and other debris in forested area; (d) Large pile of woody debris and transported A-frame 510 house grounded next to larger building; (e) 34m-long section of Mexico Beach pier deck 511 grounded against houses. 512 513 Figure 15. Debris clusters in (a) North Mexico Beach area; (b) South Mexico Beach area. 514 515 Figure 16. Resting places for distinct Large Debris Objects (LDOs) identified in Mexico Beach 516 post-Michael. (a) North Mexico Beach; (b) South Mexico Beach. Red lines indicate transport 517 paths from original locations, where identified.

518

Figure 17. Distance moved for Large Debris Objects in cases where original locations could bedetermined.

521

Table 1. High water marks measured during the present work. USGS measurements may befound in Byrne Sr. (2019).

		Elevation	
Latitude	Longitude	(NAVD88)	Description
29.952590	-85.426992	5.52	Mark inside building
29.952243	-85.425947	5.39	Mark inside building
29.951522	-85.425479	4.63	Mark in garage
29.952923	-85.430187	6.29	Eyewitness depth
29.956273	-85.424868	3.78	Wrack Line
29.945885	-85.410557	4.74	Mark inside building
29.939531	-85.395135	4.09	Mark in garage.
29.940754	-85.392837	4.04	Mark in building
29.952648	-85.427314	5.67	Mark inside garage
29.951655	-85.424893	5.38	Mark inside house
29.951396	-85.424061	4.80	Mark inside house
29.951023	-85.423786	5.31	Mark inside house
29.950682	-85.424071	5.71	Mark inside house
29.950422	-85.423121	5.73	Mark inside house
29.947654	-85.418985	6.09	Scratches on building exterior
29.947964	-85.418643	6.35	Scratches on building exterior
			Impact marks on building
29.949224	-85.420235	5.96	exterior
29.896666	-85.361097	4.21	Mark inside house
29.944418	-85.409357	4.60	Debris
29.929031	-85.392606	6.35	Runup debris
29.929045	-85.392600	7.13	Runup debris
29.928708	-85.392183	6.69	Runup Debris
29.928526	-85.391863	7.21	Runup Debris
29.928436	-85.391760	6.95	Runup Debris

Component	0	1	2	3	4	5	6
Roof	• No visible damage	 Very few shingles missing (<15% of roof area) Damage to gutters 	 Significant amount of shingles missing 15-50% of roof area) Interior of roof is NOT exposed 	 Many shingles missing >50% of roof area) Damage to roof frame 	• Holes in roof due to debris or wind- sheathing is exposed but not house interior	• Large parts of roof are missing or collapsed; house is still intact	
Walls	• No visible damage	 Minor cladding removal (<10% of 1 wall) Small scratches causing aesthetic damage 	 Cladding has been removed from >10% of 1 wall or from multiple walls Interior sheathing exposed on <10% of house 	 Cladding has been removed from >25% of walls >10% of sheathing is exposed but insulation and house interiors are not 	• Minor structural wall damage, including debris caused holes or repairable damage	 Walls have collapsed, bent or are out of plumb, structural damage Large holes in walls major structural damage 	
Foundation	• No visible damage	 Scour <0.5 feet deep around foundation Water marks around foundation Structurally sound 	 Scour 0.5-1" deep Structurally sound foundation Evidence of weathering on piles 	 Scour is between 1'-2' Structurally Sound Foundation Minor damage to piles 	 One pile out of plumb, or damaged Scour >2' deep Minor damage to foundation 	 Major but reparable foundation damage House has differentially settled >1 pile is damaged 	 House is missing Irreparable foundation damage
Attachments and Detached Structures: Stairways, Breakaway Walls, Air Conditioning, Sheds, etc.	• No visible damage	 <2 Exterior AC, pipes, etc., have been damaged or removed Damage to stair, porches, detached garage, or walkways, most structures remain in tact 	 2 or more exterior amenities (stairways, electrical wiring, etc.) are gone or destroyed Severe damage to decks, detached garages, etc. 	• Detached structures destroyed/missing			
Openings: Windows, Doors, Attached Garages	• No visible damage	 1 window or door is broken (glass only) Screens may be damaged or missing 	 >1 window is broken but damage is all on lower story of 2+ story houses <4 total openings are damaged Damage to frames of doors and windows 	 4 or more windows and doors are broken 1 or more doors was removed Damage to windows /doors on upper levels Attached garage door damaged or gone (bent or otherwise broken) 			
Interior	• No visible damage	 Minor flood damage Minimal/no evidence of rain intrusion- minor water damage in corners or around windows only Minor water damage to interior furnishings 	 Evidence of flooding Water marks (0-1') above floor Evidence of rain intrusion- dampness/water damage on <10% of wall area (one wall) Wet spots observed on <10% of ceiling, no sagging Water damage to interior furnishings 	 Significant flooding Water marks (1'-2') Ceiling damage from rain- wet spots, evidence of dripping 10-50% of ceiling area Dampness on 10-50% of wall areas Mold 	 Water marks (2'-4') Ceiling water damage affecting stability- wet spots over 50%, evidence of dripping and sagging Dampness on >50% of wall areas Evidence of dripping or cracks on walls 	 Water marks 4' or higher Ceiling damage from rain- wet spots and sagging Structural Damage to interior walls (not fixable) 	

Table 2: Damage State Component Classification Methodology from Tomiczek et al. (2017).

85.4300° W 85.4275° W 85.4250° W 85.4225° W 85.4200° W

85.42[°] W

85.40[°] W

85.38[°] W

85.36[°] W

85.42[°] W

85.40[°] W

