

HRAC Update: Asphalt Shingle Research

Principal Investigator: Forrest J. Masters, Ph.D., P.E. (FL) Co-PI: David O. Prevatt, Ph.D., P.E. (MA) Co-PI: Kurtis R. Gurley, Ph.D.

Objectives and Exp. Outcomes

- Objective\Purpose
 - To investigate the performance of new and aged asphalt roof shingles exposed to windstorm conditions and to calibrate current wind uplift requirements to realistic wind load scenarios
- Expected Outcomes
 - Provide a comprehensive quantification of the performance of new and aged shingle roof systems
 - Refine the specific causes of the inadequate performance observed in field studies
 - Create a roadmap to reduce loss associated with shingle damage in extreme winds

Asphalt Shingle Load Model Evaluation

Goal:To evaluate the current asphalt shingle load model
and extend our knowledge on wind load effects
on asphalt shingles.

Variables:

- Mean velocity
- Angle of attack
- Length and pattern of seal (unsealing effects)

ERP #7 - Asphalt Shingle Load Model Evaluation

<u>Methods:</u>

- Directly measure wind load path
 - ightarrow six-axis load cells at sealant strip and fasteners
- Measure three-axis wind velocity using TFI Cobra Probes at 1 in above shingle deck
- Use turntable and vary angle of attack
- Vary mean wind velocity
- Full seal \rightarrow partial seal \rightarrow fully unsealed load effects
- Test specimens \rightarrow I laminated, I three tab

ERP #7 - Asphalt Shingle Load Model Evaluation

ERP #7 - Asphalt Shingle Load Model Evaluation

ERP #7 - Asphalt Shingle Load Model Evaluation

ERP #7 - Asphalt Shingle Load Model Evaluation

MEASURED: 220 mph unobstructed flow | 170 mph with ASTM D7158 Turbulence Grid

Airflow

Ceiling height is adjustable to produce static regain to overcome frictional losses

and the second of the second of the

Cobra Probes

Next step..

- Final commissioning
- Testing..
- Please let us know if you wish to attend

Asphalt Shingle Load Model Evaluation

Goal:To investigate the system-level performance of ASTMD7158 Class H (150 mph) asphalt shingles subjectedto a realistic BL wind storm at the IBHS ResearchCenter in Chester County, SC

Variables:

- Mean velocity → 53, 64, 76 mph (peaks → 84, 108, 120 mph)
- Roof type \rightarrow hip vs. gable
- Product type \rightarrow three-tab vs. laminate

Institute for Business & Home Safety.

30 MW Wind Tunnel
Test Two Story Home in Cat 3 Hurricane
Chester County, SC

Complete Structure

Test Schedule

- Base structure construction complete
- Testing \rightarrow July 30th Aug 31st
- Test roofs subjected to open country BL wind test

 → Three 30 min wind tests at one direction
 → Peak speeds = 84, 108, 120 mph
 → Continuous HD video capture
 - \rightarrow Forensic investigation b/t each wind test

SERRI Project 90100 Residential Roof Covering Investigation of Wind Resistance of Asphalt Shingles Uplift Resistance of Shingles Subjected to UV + Heat + Water Spray Aging

- Repeat of thermal aging experiment add-in UV + water
 - Aging up to 3000 hr
 - Continuous cycles \rightarrow 5 hr 158 °F + UVA 340 , 15 min. water spray
 - Two manufacturers (A & B from thermal aging)
 - Five testing intervals (1, 5, 12, 16, and 20 weeks)
- Chamber details
 - 48 UVA340 Lamps @ 4" on center
 - Irradiance measured along centerline of chamber via radiometer
 - Irradiance @ 158 °F = 0.70 W/m² @ 340 nm \rightarrow equivalent to sun at noon
 - Heater control via internal thermocouples
 - 240 specimen capacity (ASTM D6381)

Test Schedule

- Experiment commenced May 7th, 2012
- Week one specimens extracted
 → Mechanical uplift testing in progress
- Experiment will conclude Sept 24th, 2012 (20 week aging)

- Thank you for your time and attention
- Questions/Comments?
- Contact Information

Dr. Forrest Masters, P.E., Assistant Professor, masters@ce.ufl.edu Dr. David Prevatt, P.E., Assistant Professor, dprev@ce.ufl.edu Dr. Kurtis Gurley, Associate Professor, kgurl@ce.ufl.edu Department of Civil and Coastal Engineering University of Florida

 Follow the project on *asphaltshingles.windengineer.org* and on the UF Hurricane Research Facebook site

