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1. Applicable Sections of the Code 
 

 1609.1.1, Florida Building Code—Building 
 2002.4, Florida Building Code—Building 

 
2. Executive Summary 
 
2.1. Description of Issues 
 
The letter from Joe Belcher on behalf of the Aluminum Association of Florida (AAF) describes the project 
(see Appendix). FBC Staff requested that we provide third-party technical input, witness testing, and 
provide a final review of the report. 
 
Dr. Sungmoon Jung, Assistant Professor of Civil and Environmental Engineering at Florida State 
University, provided primary consultation with support from UF. Dr. Jung was selected based on his 
research experience in this area. More information on this work may be found in Schellhammer and Jung 
(2012) and Lewis et al. (2013). 
 
2.2. Recommendations for the Code 
 
The wind loading applied during the full-scale tests did not exceed the design loading. In principle, no 
members should have failed. However, failures occurred at non-structural and structural members, 
especially screen attachments and posts due to unbalanced loading. 
  
The failure of screen attachments and unbalanced loading has direct implications on the rule on removing 
the screen (Rule 61G20-1.002). If some screens are cut but not others, unbalanced loading may 
accelerate the failure of the post. Code changes should be considered to either require removal of all 
screens above the chair rail, or, devise a more secure fastening of screen attachments to prevent partial 
failure and unbalanced loading. 
 
The tested specimens received very thorough inspection and quality control. However, it is well known 
that the real-world plan review and inspection may not reach such a level, and therefore, likely experience 
much more severe failure due to the hurricane. The code requirement on this issue would greatly reduce 
potential failure of screen enclosures due to the hurricane. 
 
Finally, the tensile ultimate strength and tensile yield strength of the aluminum extrusions, based on the 
testing of coupons harvested from the specimens, were lower than the specified values. To ensure that 
the aluminum meets or exceeds the specified performance levels, the building code should require that 
material certification be submitted to the building official. 
 
3. Selection of Testing Specimens 
 
3.1. Overview 
 
An oversight committee consisting of members of the Aluminum Association of Florida (AAF) and the 
Insurance Institute for Business & Home Safety (IBHS) was formed. FBC staff (Mo Modani) and Chair of 
the Structural TAC (Jim Schock) also participated.  
 
During the first meeting (January 15, 2014), Dr. Masters discussed the scope of work, its relation to the 
entire scope of projects funded by the Florida Building Commission, and facilitated introductions among 
the group. Joe Belcher then led a discussion on the original proposed plan. Drs. Jung and Reinhold 
discussed prior research and the IBHS facility, respectively.  
 
The group agreed on performing comparative experimental testing of two screen enclosure systems. The 
first system will be based on signed and sealed, site-specific plans. This “generic” system will be based 
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on conventional design practice, which represents the majority of designs outside of the HVHZ in Florida. 
The second system will be identical to the “generic” system except that the design will conform to 
requirements set forth in the 2010 AAF Guide to Aluminum Construction in High Wind Areas. 
 
3.2. Details of the Selection Process 
 
AAF acquired 35 signed and sealed, site-specific plans from the St. Johns County Building Department 
and the City of Jacksonville. Design criteria were either 120 mph Exposure B, 130 mph Exposure C, or 
120 mph Exposure C. Ten designs with a mansard roof with approximate dimensions of 24 ft X 40 ft X 9 ft 
and a 48 in rise in the roof were selected, de-identified, and forwarded to Dr. Jung (FSU) to review. 
 
Dr. Jung selected one plan, independent of stakeholder inputs, using the approach explained in the 
following. The selected plan was the one showing average structural performance among the ten 
candidate plans. This specimen will be referred as “Generic specimen.” Once the Generic specimen was 
selected, then the AAF designed a second specimen similar in shape and size following the AAF Guide 
(AAF 2010). This specimen will be referred as “AAF specimen.” 
 
3.2.1. Ranking Criteria 
 
In order to rank the candidate designs in an objective manner, ranking criteria were developed. Failure of 
any member is likely to cause subsequent failures of other members, and eventually collapse the entire 
structure. Therefore, failure of any type of member was included in the criteria. For certain type of failure 
(ex: failure of beams), although the failure at certain location may be more detrimental to the structure 
than the failure at another location, the difference was not considered because the difference is likely to 
be small given little redundancy in screen enclosures. Ideally, failure of connections should also be 
considered. However, drawings often did not clearly show connection details so it was difficult to compare 
their performance objectively. Therefore, failure of connections was not included in the criteria. The 
developed criteria and rationale are shown below. 
 
Since the time-frame of the project did not allow finite element analysis of individual candidate structures, 
the “Screen Enclosure Structural Calculator” (referred as the Tool) was utilized to obtain input to these 
criteria. The Tool provided approximate analysis results of screen enclosures given specimen dimensions 
and member properties. The Tool may have introduced small errors because of approximate nature of the 
analysis, but it was sufficient to rank candidates. 
 
Failure of roof bracing and wall bracing (relative importance = 30%) 
 
Among different types of members, higher weights were given to roof bracing and wall bracing because 
their failure is likely to lead to the collapse sooner than the failure of other types. When they are intact, 
they prevent rotation of beams due to the wind loading. When they fail, the beams rotate (assuming 
beam-to-host connections fail), which can cause catastrophic failure of the structure. The Tool provides 
two outputs on this category: “Diagonal Braces” (referred as B1) and “Front Wall Bracing” (referred as B2), 
each in percentage. 100% means the failure condition has reached. After converting the percentage to a 
number (100% = 1.0, 150% = 1.5, etc.), the following equation was used to calculate the damage 
contribution from the bracing. 

௕௥௔௖௜௡௚ܦ ൌ ሺܤଵ ൅ ଶሻ/2ܤ ൈ 0.3 
in which ܦ௕௥௔௖௜௡௚ is the damage contribution from the roof bracing and wall bracing. The factors were 
determined so that when both roof bracing and wall bracing reach 100% (= 1.0), the damage index 
becomes 0.3 or relative importance of this category. Higher failure probability will be penalized with a 
higher damage index. 
 
Redundancy in roof bracing and wall bracing (relative importance = 40%) 
 
Since the roof and wall bracings are critical in preventing enclosure performance, additional parameters 
were introduced to consider their redundancy. The parameter R1 addresses the redundancy in the roof 
bracing. If roof bracing near the host structure continues to the other end (i.e., forms a load path), then R1 
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= 0 or does not contribute to damage index. If the bracing forms the load path mostly but are missing 
between two purlins once, R1 = 0.5. If the bracing is missing twice or more (i.e., load path unlikely), R1 = 
1. Since all designs were symmetric, one of the two sides of the bracing was considered to check this. 
The parameter R2 deals with the redundancy in the cable bracing. R2 = 0 if two or more cables present on 
one corner (therefore four or more cables total). R2 = 1 if one or no cable. 

௥௘ௗ௨௡ௗ௔௡௖௬ܦ ൌ ሺܴଵ ൅ ܴଶሻ/2 ൈ 0.4 
 
Failure of posts (relative importance = 15%) 
 
Failure of posts is very likely to cause failure of adjacent members due to the combination of wind loading 
and gravity. The Tool provides “Corner Posts” (referred as P1), “Front Posts” (referred as P2), and “Side 
Posts” (referred as P3). The following equation was used for the damage contribution from this category. 

௣௢௦௧௦ܦ ൌ ሺ ଵܲ ൅ ଶܲ ൅ ଷܲሻ/3 ൈ 0.15 
 
Failure of purlins, eave rails, and beams (relative importance = 15%) 
 
The last member category includes beams, purlins, and eave rails. The Tool provides “Purlins” (referred 
as O1), “Eave Rails” (referred as O2), and “Beams” (referred as O3). The following equation was used for 
the damage contribution from this category. 

௢௧௛௘௥௦ܦ ൌ ሺ ଵܱ ൅ ܱଶ ൅ ܱଷሻ/3 ൈ 0.15 
 
3.2.2. Ranking Results 
The ten candidate plans were ranked according to the criteria. The original design plans are not included 
in this report due to the copyright issues, but their performance indices are summarized below in Table 1. 
The top ranking plan has the highest damage index, i.e., it has the worst structural performance. 
 
Table 1. Ranking of expected structural performance of candidate structures (ranking #1 corresponds to 

the expected worst performance) 

Plan ID B1 B2 R1 R2 P1 P2 P3 O1 O2 O3 
Damage 

Index 
Ranking 

11303480 2.237 1.116 1 1 1.224 1.094 0.906 0.605 0.509 1.926 1.216 1 

11308820 1.977 0.875 1 1 1.104 1.034 0.587 0.633 0.35 2.998 1.163 2 

11305289 1.637 2.221 0.5 1 1.191 1.102 0.581 0.666 0.89 1.152 1.158 3 

11307939 1.586 0.963 0.5 1 1.013 0.886 0.621 0.495 0.42 5.189 1.114 4 

11308225 1.691 1.016 1 0 1.107 0.764 0.552 0.556 0.404 2.138 0.882 5 

11309823 1.334 2.285 0 0 1.04 0.971 0.758 0.363 0.501 2.285 0.839 6 

11303812 1.252 1.294 0 0 1.733 1.046 0.774 0.37 0.542 1.171 0.664 7 

11308882 0.991 0.585 0.5 0 0.954 0.741 0.407 0.662 0.282 1.871 0.582 8 

11303074 0.961 0.966 0 0 1.018 0.912 0.496 0.274 0.36 2.217 0.553 9 

11309038 0.995 0.489 0 0 0.851 0.872 0.424 0.346 0.29 1.616 0.443 10 
 
Design plans with medium performance were 8225 (ranking #5) and 9823 (ranking #6). The plan 8225 
was ultimately chosen as the specimen for the experiment, because the bracing and cable scheme of the 
plan 8225 was more representative compared to the plan 9823. Due to the approximate nature of the 
ranking, other designs in the medium range were also qualitatively checked, to ensure that a good 
candidate for the experiment was not missed. The plan 5289 (ranking #3) had only one set of cable 
exhibiting high stress. The plan 7939 (ranking #4) had extreme beam overstress. The height of plan 3812 
(ranking #7) was too high (12.5 feet) that it was an outlier among the ten designs. Therefore, it was 
confirmed that the plan 8225 (ranking #5), qualitatively, was also the most representative among the ten 
designs without having any major issue. 
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3.3. Selected Specimens 
The drawings of AAF specimen are shown in the Appendix (section 11.2). Connection details of this 
specimen follow the AAF guide (AAF 2010). Overall dimensions of both specimens are 24 ft × 37.5 ft × 
11.25 ft. The eave height is 8.25 ft. Major differences between the Generic and the AAF specimens are: 
 Generic posts are 2X4 SMB and 2X5 SMB whereas AAF posts are all 2X4 SMB 
 Generic eave rails are 2X2 whereas AAF eave rails are 2X3 
 Generic beams are 2X6 SMB whereas AAF beams are 2X8 SMB 
 Generic purlins are 2X2 whereas AAF purlins are 2X3 
 Generic uses 7” super gutter whereas AAF uses 5” super gutter 
 AAF specimen has additional roof bracing and backing plates at some purlins 
 AAF specimen does not have cables on the side walls 
 Some AAF purlins require backing plates (at bracing bays) 
 
4. Preliminary Analysis of Specimens 
 
4.1. Preliminary Finite Element Analysis 
 
In order to assist the experimental set up, finite element analysis was conducted for both specimens 
using SAP2000 (CSI 2009). Figure 1 shows the developed finite element model. All boundaries have 
fixed translations and freed rotations. Moment end-releases are shown with green dots in the figure. In 
reality these connections would have some moment resistance, but they were modeled as hinges due to 
the unavailability of their moment resistance. 
 
For the aluminum, elastic modulus = 10100 ksi and Poisson’s ratio = 0.33 were used. For the cable, 
elastic modulus = 16000 ksi and Poisson’s ratio = 0.3 were used without pre-stress. Two load cases from 
the Florida Building Code were used (FBC 2010). The first load case used pressure on the windward wall, 
leeward wall, and suction on the roof. The second load case used pressure on the front wall, and suction 
on the roof. Exposure B, 120 mph wind loading was multiplied by 0.6 (to ASD) and 0.88 (screen). 
Therefore, the pressures on windward, leeward, and the roof were 10.6 psf, 7.9 psf, and 3.2 psf, 
respectively. 
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Figure 11. Sensor indices: generic specimen (A: axial, M: moment, C: cable) 

 

 
Figure 12. Sensor indices: AAF specimen (A: axial, M: moment, C: cable) 
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sensors functioned properly. Also, they provided data points useful for the calibration of analysis models. 
 
Figure 13 shows the ten static pull test cases. The same patterns were used for both the generic and the 
AAF specimens. Each pull test case was composed of 4.75 lb, 29.65 lb, 53.8 lb, 78.45 lb, and 102.5 lb. 
Weight plates were added one at a time, and the vertical force was converted to the lateral force using a 
pulley mechanism shown in Figure 14.  
  

 
Figure 13. Static pull test cases for sensor testing and model calibration 
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wind loading sequence for the Generic specimen is shown in Table 5 whereas that for the AAF specimen 
is shown in Table 6. Unlike Series I through III, Series IV involved retrofitting part of the damaged screen 
and/or structure. Further details of the retrofit will be explained later when we discuss the experimental 
results. 
 
The wind speed given in the table is at the standard height, i.e., 33 ft (10 m) from the ground. 
 

Table 2. Wind loading series I: different speeds and turbulence (both specimens) 

Runs 
Angle 
(deg) 

Maximum 
Wind 

Speed 

Longitudinal 
Turbulence 

Lateral 
Turbulence

Duration 
(minutes) 

1 90 30 No No 5 
2 90 45 No No 5 
3 90 45 Yes* Yes* 15 
4 90 45 Yes Yes 15 
5 90 60 No No 5 
6 90 60 Yes Yes 15 

* Wind at each fan cell is identical, i.e. correlation = 1 
 

Table 3. Wind loading series II: effect of wind angles (both specimens) 

Runs 
Angle 
(deg) 

Maximum 
Wind 

Speed 

Longitudinal 
Turbulence 

Lateral 
Turbulence

Duration 
(minutes) 

7 75 45 No No 5 
8 75 60 No No 5 
9 75 60 Yes Yes 15 
10 60 45 No No 5 
11 60 60 No No 5 
12 60 60 Yes Yes 15 
13 45 45 No No 5 
14 45 60 No No 5 
15 45 60 Yes Yes 15 
16 30 45 No No 5 
17 30 60 No No 5 
18 30 60 Yes Yes 15 
19 15 45 No No 5 
20 15 60 No No 5 
21 15 60 Yes Yes 15 
22 0 45 No No 5 
23 0 60 No No 5 
24 0 60 Yes Yes 15 

 
Table 4. Wind loading series III: incrementally increase wind speed (both specimens) 

Run 
Angle 
(deg) 

Maximum 
Wind 

Speed 

Longitudinal 
Turbulence 

Lateral 
Turbulence

Duration 
(minutes) 

25 0 70 No No 5 
26 90 70 No No 5 
27 90 80 No No 5 
28 0 80 No No 5 
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29 0 90 No No 5 
30 90 90 No No 5 

 
Table 5. Wind loading series IV: investigate the response under the maximum speed (Generic specimen) 

Run 
Angle 
(deg) 

Maximum 
Wind 

Speed 

Longitudinal 
Turbulence 

Lateral 
Turbulence

Duration 
(minutes) 

31 270 100 No No 5 
32 0 100 No No 5 
33 0 110 No No 5 

 
Table 6. Wind loading series IV: investigate the response under the maximum speed (AAF specimen) 

Run 
Angle 
(deg) 

Maximum 
Wind 

Speed 

Longitudinal 
Turbulence 

Lateral 
Turbulence

Duration 
(minutes) 

31 90 100 No No 5 
32 90 100 No No 5 
33 90 100 No Yes 5 
34 90~0 100 No Yes 5 
35 90 100 No Yes 5 
36 90 100 No Yes 5 
37 90 100 No Yes 5 
38 90 100 No Yes 5 
39 270 100 No Yes 5 
40 255 100 No Yes 5 

 
6. Observations during the Experiment 
 
6.1. Generic Specimen 
 
The generic specimen did not show any significant damage until Run 27 (80 mph). During Run 27, one 
2X1 screen attachment failed and caused large movement of the attached screen as shown in Figure 16. 
The failed member was inspected after Run 27, which showed that the failure was due to the pullout of 
inner screws (Figure 17). The attachment had permanent distortion but it was still attached to the 
adjacent structural member. 
 
Run 28, the same maximum wind speed but applied at the wind angle of 0 degree, showed very similar 
behavior. Two 2X1 screen attachments at the upper center part of the windward wall failed in a similar 
way. When the maximum wind speed increased to 90 mph at Run 29, one 2X1 member further detached 
from the structure as shown in Figure 18. This particular stayed attached at one corner without causing 
failure of the main structural member. 
 
The next load case was Run 30, with the maximum wind speed of 90 mph applied at the wind angle of 90 
degrees. One 2X1 member detached from the structure as shown in Figure 19. Similar failure occurred to 
one additional 2X1 member next to the host structure, which fluttered while staying attached to the 
structural member. The failed members were visually inspected after the Run 30. As shown in Figure 20, 
unlike the cases so far, failure of the 2X1 member caused failure of structural members. The failed 
structural members were the vertical post attached to the host structure and the member below the eave. 
 
Due to the unexpected failure of the screens in both 0 degree wind angle and 90 degree wind angle, we 
were not able to fully load the generic specimen. The maximum wind speed that the structural members 
experienced was 80 mph, because at 90 mph screens began to fail. After completing Run 30, these failed 
screens were re-installed, with the exception of the corner shown in Figure 20 where re-installation was 
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Figure 31. Axial force results for AAF, Pull 01 load case 

 

 
Figure 32. Moment results for Generic, Pull 01 load case 

 
Among various analysis results, two sample results are shown in Figure 31 and Figure 32. Each data 
point represents forces or moments in one of the sensor locations (see Figure 11, Figure 12). X-
coordinate comes from the sensor reading in the experiment. Y-coordinate comes from the forces or 
moments in the finite element analysis. Therefore, a perfect correlation between the experiment and the 
analysis will be aligned along Y = X line shown as the red line. 
 
Model C is chosen for further analysis after comparing the performance of the three modeling 
assumptions. Axial forces overall showed good match between the experiment and the analysis. 
Moments were less accurate, probably in part due to the small magnitude of the applied force and in part 
due to the inaccuracy in connection modelling. All finite element models assumed either completed fixed 
or free connections, whereas the true behavior would be in between these two. Finally, the cable forces 
had most error between the experiment and the analysis. The analysis could not reproduce the 
measurement. 
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7.3. Comparison of the Design Loading and Actual Loading 
 
Before comparing the analysis results and experimental data, we need to understand the relation 
between the design loading used in the analysis and actual loading applied in the experiment. The design 
loading is clear because we followed the loading given in the Florida Building Code (see section 4.1). The 
design loading is for 120 mph Exposure B. The actual loading can only be estimated because it was not 
measured. We estimated the actual loading using the wind speed profile of the IBHS center (Morrison et 
al. 2012) and the drag coefficient of 0.7 (Reinhold et al. 1999), which includes the gust effect, drag, and 
screen reduction factor. In the comparison and further analysis below, 90 mph was chosen as the 
maximum load case. The reason is because comparison at 100 mph was difficult due to the difference in 
failed screens between the Generic and the AAF specimen and loss of sensors at this speed. 
 
Figure 33 compares the design loading and the actual loading for the windward wall. At the reference 
height of 33 ft, actual loading is greater than the ASD loading but smaller than the LRFD loading. 
However, below 11 ft where the screen enclosure is located, the design loading is always greater than the 
actual loading. The trend is similar to the leeward wall, but the design loading is lower than the windward 
case. To compare the total loading approximately, base shear and base moment were also computed 
assuming freestanding walls. Figure 34 summarizes the comparison. 
 

 
Figure 33. Comparison of the design loading and the actual loading 

 

 
Figure 34. Ratio of the actual to design base shear and base moment 
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7.4. Comparison of the Analysis and Experiment 
 
As shown in Figure 33 and Figure 34, the actual loading applied in the experiment is lower than the 
design loading used in the analysis. Therefore, data (force or moment) from certain sensor should also be 
lower than the corresponding result from the analysis. If the experimental data is higher than the analysis 
result, possible causes include localized effect of the wind gust, and discrepancy between the finite 
element model and the physical specimen. In this project, we investigated those data points in detail (i.e., 
experiment > analysis) focusing on implications on the current design code, but we did not investigate the 
exact cause. Further research is necessary to identify the cause. 
 
Unlike the pull tests presented earlier, data from wind tests fluctuate due to the fluctuations of the wind. 
Figure 35 shows sample time-series from Run 28, for the sensor A-6 of the Generic specimen. The 
original time series was 300 seconds but only the first 30 seconds is shown here. The change in force 
was measured with respect to the initial condition, after the gravity and the cable tensions were applied. 
This particular member was subjected to the compression when the wind loading was applied. The force 
fluctuated because of the fluctuations of the wind. In order to compare this type of data with the static 
finite element analysis, the mean and the maximum of the time-series were used. In the example shown 
in Figure 35, the mean = –0.466 kips and the maximum (compressive force) = –0.579 kips. 
 

 
Figure 35. Sample time-series from the experiment: Generic specimen, Run 28, sensor A-6 

 
Experimental data from the Generic specimen is first compared to the analysis result. Maximum 
measurement from each sensor was compared to the corresponding analysis result as shown in Figure 
36. Similar figures for other wind angles and moments can be found in the Appendix (section 11.3). For 
the square markers, experimental data from 80 mph test were used. For the diamond markers, 
experimental data from 90 mph test were used. For both markers, analysis results using FBC ASD 
loading were used. All sensor data were used for 80 mph case, but sensors 7, 13, 15, and 17 failed 
during the 90 mph test. In this figure, we can see that tensile forces from the experiment are smaller than 
those from the analysis, except for tensile forces of small magnitude. Therefore, if the structure can 
sustain the high tensile forces shown earlier in Figure 2, no additional members raise any concern. On 
the other hand, compressive forces from the experiment are larger than those from the analysis for some 
members. What this implies is that the current design loading with conventional finite element analysis 
may not catch potential failure of these members. These sensor locations are marked for further 
investigation. 
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Figure 36. Comparison of the data from the experiment and results from the analysis: Generic specimen, 

0 degree wind angle, axial forces 
 
Figure 37 graphically shows the marked sensor locations. Corner bracings, the center post on the 
windward wall (for 90 degrees wind angle), and members next to the cables showed high experimental 
measurement. These locations experience higher localized forces than what’s predicted by the finite 
element analysis. For these members, actual to allowable stress ratios were computed for members in 
compression or bending, using both the maximum measurement and average measurement. For the 
members in tension, tensile forces were obtained. The results are summarized in Figure 38. All sensors 
used the data from 90 mph tests except the sensors failed at that speed, for which the data from 80 mph 
tests were used. The only member that exceeded the allowable stress is the corner bracing with the 
sensor A-1. The member did not buckle probably because the actual connections at the ends provide 
shorter length for buckling, compared to the length used for the allowable stress calculation. 
 
When we compare high moment locations (M-17, M-18) with the location that lost the screen attachment 
(see Figure 24), we can hypothesize that high moment contributed to the failure of the screen attachment. 
We can also hypothesize that overall higher moments in the Generic specimen led to greater loss of 
screen attachments compared to the AAF specimen. With the available data, it is not possible to prove or 
disprove these points, but these can be further investigated in the future study. 
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Figure 37. Sensor locations that showed notable forces and moments: Generic specimen 

 

 
Figure 38. Actual to allowable stress ratio (left) and tension (right) of selected members: Generic 

specimen 
 
Similar data analysis was conducted for the AAF specimen as shown in Figure 39. Additional figures can 
be found in the Appendix (section 11.3). All sensors were used except the sensors 3, 12, and 19 due to 
the poor quality of data. Sensors with notable forces and moments were marked, which are summarized 
graphically in Figure 40. Similar to the Generic specimen, the posts on the windward wall (for 90 degrees 
wind angle) and the roof corners showed high forces and moments. The center roof beam also showed 
high forces and moments. 
 
Figure 41 shows further analysis of these notable locations. All sensors used the data from 90 mph tests. 
M-18 shows the moment of the vertical post that failed during the 100 mph test. Even at 90 mph, the 
maximum actual to allowable stress ratio exceeded 1.0. Other sensors also showed large values, but not 
to the extend to fail the members. 
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Figure 39. Comparison of the data from the experiment and results from the analysis: AAF specimen, 0 

degree wind angle, axial forces 
 

 
Figure 40. Sensor locations that showed notable forces and moments: AAF specimen 
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Figure 41. Actual to allowable stress ratio (left) and tension (right) of selected members: AAF specimen 

 
8. Implications to the Code 
 
The wind loading applied during the full-scale tests did not exceed the design loading. In principle, no 
members should have failed. However, failures occurred at non-structural and structural members. 
Relevant sections of the code may be revised to reflect the observations. Specifically: 
 
 Screens began to fail at 80 mph. 
 Some 2X1 screen attachments failed at 90 to 100 mph. Some of the failed screen attachment 

fluttered while attached to the structural member, and led to the failure of the structural member. 
 One vertical post failed due to the unbalanced loading. One side of the failed post had the screen 

(and therefore wind loading) whereas the other side did not have the screen. 
 
The failure of screen attachments and unbalanced loading have direct implications on the rule on 
removing the screen (Rule 61G20-1.002). If some screens are cut but not others, unbalanced loading 
may accelerate the failure of the post. Code changes should be considered to either require removal of all 
screens above the chair rail, or, devise a more secure fastening of screen attachments to prevent partial 
failure and unbalanced loading. 
 
The tested specimens received very thorough inspection and quality control. However, it is well known 
that the real-world plan review and inspection may not reach such a level, and therefore, likely experience 
much more severe failure due to the hurricane. The code requirement on this issue would greatly reduce 
potential failure of screen enclosures due to the hurricane. 
 
Finally, the tensile ultimate strength and tensile yield strength of the aluminum extrusions, based on the 
testing of coupons harvested from the specimens, were lower than the specified values. To ensure that 
the aluminum meets or exceeds the specified performance levels, the building code should require that 
material certification be submitted to the building official. 
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11.3. Appendix C – Comparison of the Experimental Data and the Analysis Results 
 
Experimental data are from 80 mph tests and 90 mph tests. Analysis results are obtained by applying 
FBC ASD wind loading case explained in section 4.1. The rest of the figures are given in section 7.4 and 
section Error! Reference source not found.. 
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 Generic, 90 degrees wind angle 
 

 AAF, 0 degree wind angle 
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 AAF, 90 degrees wind angle 
 

 AAF, 90 degrees wind angle 
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