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Abstract 

In response to the 1973 oil embargo, many states began passing building energy codes in order to 
promote energy efficiency. While the vast majority of states have energy codes in place, policy­
makers are now attempting to legislate energy codes at the federal level to help address more re­
cent concerns about energy and climate change. Despite widespread implementation of energy 
codes and calls for greater stringency in the future, surprisingly little is known about whether en­
ergy codes are an effective way to reduce energy consumption in practice. While the existing 
evidence comes mostly from engineering simulations, this paper provides one of the first evalua­
tions of an energy-code change that uses residential billing data on electricity and natural-gas 
consumption. Using data from Gainesville, Florida, we find that the state's energy-code change 
that took effect in 2002 is associated with a 4-percent decrease in electricity consumption and a 
6-percent decrease in natural-gas consumption. The pattern of savings is consistent with reduced 
consumption of electricity for air-conditioning and reduced consumption of natural gas for heat­
ing. We also estimate economic costs and benefits. We find that, under the best-case scenario, 
the private payback period for the average residence is 7.5 years. The social payback period, 
which accounts for the avoided costs of air-pollution emissions, ranges between 4 and 6 years, 
depending on whether avoided damages from carbon dioxide are included . 

• This draft was prepared for purposes of discussion at the Conference on Green Building, the Economy, and Public 
Policy to be held at University of California, Berkeley on December 2-3, 2009. We are grateful to Erin Mansur and 
Paige Skiba for helpful discussions. 
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1. Introduction 

Improving energy efficiency is an increasingly important component of energy policy in the 

United States. In addition to longstanding concerns about resource scarcity and national security, 

recognition of climate change and the need to reduce greenhouse gas emissions has further ele­

vated the importance of energy efficiency. Much attention is focused on improving efficiency in 

the built environment, as buildings account for roughly 72 percent of the electricity consumption, 

39 percent of all energy use, and 38 percent of the carbon dioxide emissions in the United States 

(USGBC 2009). Building energy codes (hereafter "energy codes") are the primary policy in­

strument for influencing the energy efficiency of newly constructed buildings. The vast majority 

of states have state-wide energy codes for both commercial and residential buildings (U.S. DOE 

2009), and increasing the stringency of energy codes has been a priority of the U.S . Department 

of Energy for decades. Recently, however, the policy relevance of energy codes has increased 

markedly with their inclusion in pending legislation for a national policy to address climate 

change. The Waxman-Markey climate bill that recently passed in the U.S. House of Representa­

tives requires that all states enact residential building codes by 2014 that are 30 percent more 

stringent than the 2006 International Energy Conservation Code Standard, and the target in­

creases to 50 percent more efficient in 2017. Though less explicit, the Boxer-Kerry bill, which is 

the Senate's version that has yet to pass, also includes provisions for increased stringency of en­

ergy codes. 

Despite proposals for such sweeping changes to residential energy codes, surprisingly lit­

tle is known about how energy codes affect residential energy consumption in practice. Evalua­

tions are typically based on engineering simulations that compare energy usage of a baseline pre­

code-change residence to that of a baseline post-code-change residence. I While this approach is 

useful in many respects, particularly for making ex ante predictions, it has a number of potential 

DOE-2 and EnergyGauge are two common software programs used to conduct simulation models on the effect of 
energy-code changes on energy use. Examples of two govemment-commissioned evaluations of residential energy­
code changes are Fairey and Sonne (2007) for the Florida Department of Community Affairs and Lucas (2007) for 
the U.S. Department of Energy. The former studies real policy changes in Florida, and the latter predicts what might 
happen with policy changes in the gulf coast region . Both conclude that residential energy-code changes can result 
in substantial energy savings. Links to a number of other studies can be found through the U.S. Department of En­
ergy's Building Energy Codes Program online at www .energycodes.govlimplementltech_assist_reports.stm. 
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limitations. First, changes in energy codes may not affect building infrastructure if the codes are 

not effectively enforced or if the codes are not stringent enough to be binding. Evidence at the 

state level suggests, for example, that energy codes for the thermal resistance of household insu­

lation had no significant influence on actual levels of insulation (Jaffe and Stavins 1995). More 

generally, Jaffe and Stavins (1995) conclude that their analysis "does not suggest that building 

codes made any significant difference to observed building practices in the decade 1979-1988" 

(p. S61). Second, even if energy codes are effective at changing infrastructure, engineering simu­

lations take no account of potential behavioral responses. For instance, improvements in energy 

efficiency decrease the effective price of energy-related services, such as air-conditioning, which 

may stimulate demand and produce a so-called "rebound effect." Greening et al. (2000) survey 

the literature on rebound effects and find implied residential elasticities of 0.1 to 0.3 for space 

heating, 0 to 0.5 for space cooling, 0.05 to 0.12 for water heating, and 0.1 to 0.4 for lighting. 

Third, if the assumptions that engineering models are based on are not accurate, then realized 

energy savings will be different than predicted energy savings. Metcalf and Hassett (1999), for 

example, find that the realized returns of attic insulation differ significantly from those predicted 

by an engineering model. Specifically, they find that that while a simulation model predicts an 

annual savings of 50 percent, the realized returns are substantially lower at only 9 percent. 

In this paper, we employ a different methodology to evaluate whether energy codes affect 

residential energy consumption. Rather than conduct simulations, we take advantage of utility 

billing data to directly compare actual energy consumption of households built under different 

energy-code regimes. Because the approach is based on actual changes in both the building code 

and energy consumption, the approach accounts for changes in construction practices, or lack 

thereof, and for potential behavioral responses. Such ex post analyses based on field data are 

needed to more fully evaluate the effects of energy codes? The paper makes several contribu­

2 There are two recent working papers that address this need, but we have yet to thoroughly review them and include 
them in our discussion . One uses per capita electricity consumption in 48 US states to investigate the impact of resi­
dential building codes and finds an effect (Arroonruengsawat et af. 2009). The other, which is perhaps more closely 
related to our study, uses residential billing data in California and finds that building codes affect the electricity effi­
ciency of dwellings constructed after 1983 but not before (Costa and Kahn 2009). 
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tions by providing (1) the first study, as far as we know, that uses residential billing data to 

evaluate the effect of an energy-code change on both electricity and natural-gas consumption, (2) 

evidence that energy codes can in fact reduce energy consumption with magnitudes relatively 

close to simulation estimates, (3) a cost-benefit analysis to derive both private- and social­

payback periods, and (4) a template for how similar studies can be carried out in other areas. 

nat was com15ined~wi-t&-apprai~erdata~f0r--a-seFofIc5bservable~e-naracteFi s-tfes- feFeac11 

re~iden-c~ Our evaluation of the impact on energy consumption is based on comparisons between 

residences constructed within three years before and three years after the energy-code change 

was implemented. Using monthly utility bills for the years after the code change, we employ two 

empirical strategies for both electricity and natural gas. The first is comparisons of mean con­

sumption after controlling for differences in observable characteristics; the second is difference­

in-differences estimates of the responsiveness of energy consumption to variability in weather. 

The first approach produces our main results: the energy code appears to have caused a 4-percent 

decrease in annual electricity consumption and a 6-percent decrease in annual natural-gas con­

sumption. Moreover, the differences in the energy savings by month and weather variability are 

consistent with reduced consumption of electricity for air-conditioning and reduced consumption 

of natural gas for heating, which are the two main end-uses that are targeted by energy codes. 

Finally, we consider the costs and benefits of the energy-code change on a per residence basis. 

The costs consist of increased compliance costs, while the benefits consist of lower expenditures 

on utility bills and avoided social costs of air-pollution emissions. We find that, under the best­

case scenario, the private payback period is roughly 7.5 years, and the social payback period 

ranges between roughly 4 and 6 years, depending on whether avoided damages from carbon di­

oxide are included. 

The remainder of the paper is organized as follows: Section 2 describes the empirical set­

ting of our study along with the methods of data collection. Section 3 reports the results of the 

main empirical analysis. Section 4 provides estimates of the costs, benefits, and payback periods. 
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Section 5 discusses the results and compares them to those of an engineering simulation model. 

Section 6 concludes with a brief summary and remarks about the generalizability of our results. 

2. Empirical Setting and Data Collection 

Residential construction in Florida has been regulated under a state-wide energy code since 

1978. Like the energy codes in most states, Florida's residential code sets a minimum energy ef­

ficiency standard for space heating, space cooling, and water heating. Florida's code is a per­

formance-based code, which means that the overall efficiency of a new home is considered ra­

ther than its specific component parts. In order to comply with the code, which is required to ob­

tain a building permit, newly constructed residences are compared with a baseline home that es­

tablishes an overall energy standard, sometimes referred to as an "energy budget." While certain 

components of the newly constructed home can be less efficient than the baseline home, the new 

home's overall efficiency rating must meet or exceed that of the baseline home-that is, the resi­

dence must stay within its energy budget. Characteristics of the baseline home determine the 

stringency of the energy code, and these characteristics have changed over time in Florida. 

This paper considers the effect of changes adopted by the Florida Building Commission 

for the 2001 Building Code that were first implemented on March 1, 2002. At the time, three ma­

jor changes were made to the energy code. First, for the central and south Florida climate re­

gions, the baseline heating system was changed from electric strip resistance with a Heating Sea­

son Performance Factor (HSPF) of 3.4 to an electric heat pump with an HSPF of 6.8. The more 

stringent HSPF was already in place in the northern climate region. Second, the assumed air­

distribution system of the baseline home was changed from "leak free" to "leaky." This effec­

tively relaxed one aspect of the code because homes determined to be leak free could earn a sub­

stantial credit for having an improved air-duct system.3 Third, the Solar Heat Gain Coefficient 

(SHGC), which is the amount of solar heat the passes through a window compared to how much 

3 "Leak free" in the Florida energy code is defined as air leakage less than 5 percent of the rated air handler flow at a 
pressure of 25 Pascal (0.1 inches water gauge) . The energy credit for qualifying as leak free is substantial , ranging 
between 13 and 15 percent of heating and cooling energy. 
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strikes it on the outside, was reduced from 0.61 to 0.4. This change was the most substantial and 

expected to have a large impact in all three of Florida's climate regions. 

These three major changes to the energy code were designed to bring the 200 I Florida 

Building Code into alignment with the International Energy Conservation Code (IECC), and to­

gether they led to a substantial increase in the stringency of Florida's regulation.4 According to 

EnergyGauge (2002), which is the authorized code-compliance software for Florida, the esti­

mated increase in stringency was 4, 15, and 10 percent for the northern, central, and southern re­

gions, respectively. These predicted percentage changes in stringency, however, apply only to 

energy used for space heating, space cooling, and water heating. 

We focus in this paper on how changes in the residential energy code translate into 

changes in actual energy consumption. In particular, we focus on the changes to Florida's energy 

code that applied in the northern climate region. We obtained residential utility data for house­

holds in the city of Gainesville, which is located in the northern part of the state. The data were 

downloaded from Gainesville-Green.com, which is a website designed to encourage energy con­

servation through provision of publicly-available information on household energy consump­

tion. 5 Included in the dataset are monthly billing records for electricity and natural-gas consump­

tion for residential households. Residences included in the Gainesville-Green dataset were se­

lected based on the criteria of having 12 months of electric service in 2006 and the meter match­

ing a single building on its parcel. While the complete set of monthly billing data spans 2000 

through 2006, we use only data from 2004 through 2006, the period that includes residences built 

before and after the energy-code change.6 Also included in the data is detailed information on 

4 Smaller changes were also made to the code that might impact compliance under certain circumstances: 1) energy 

credits for certain white roofing products, 2) a greater penalty for air-handler units located in attics, 3) updated mul­

tipliers for attic insulation, 4) inclusion of multipliers for Interior Radiation Control Coatings (IRCC), and 5) credits 

for factory-sealed air handlers . Further details about all changes in Florida's 2001 energy code are available online, 

along with the official compliance software (EnergyGauge 2002). 

5 Gainesville-Green.com is a cooperative effort among The City of Gainesville, Gainesville Regional Utilities, the 

University of Florida's Institute for Food and Agricultural Sciences, the International Carbon Bank and Exchange, 

and Acceleration.net. The first version of Gainesville Green appeared online in 2008. 

6 Though not reported here, we also conduct analyses that incorporate the data for years 2000 through 2003. But, as 

will become clear later, the earlier data adds nothing to identification of the energy-code effects, because post-co de­

change residences were not constructed yet. Nevertheless, as might be expected, the results are robust to models that 

include the additional data. 
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housing characteristics, including infonnation on zip code, square footage, number of bathrooms, 

number of bedrooms, number of stories, air-conditioning, roof type, and effective year built.? 

The housing characteristic of primary interest is effective year built (EYB) because it en­

abIes us to detelmine when a residence was constructed and, in particular, whether it was subject 

to the energy code regime before or after the 200 I changes came into effect. EYB typically indi­

cates the year when construction was completed-i.e., year of the final inspection-but it can 

also indicate the year when the last major remodeling occurred. In order to focus on residences 

for which EYB indicates the year when initial construction was completed-which, as explained 

below, we use to detennine the corresponding energy-code regime-we drop any residence in 

the data with a utility bill on record prior to its EYB, as this suggests EYB indicates a remodel­

mg year. 

Using EYB to categorize the remaining residences as being constructed pre- or post-code 

change, we must also take account of the fact that Florida's energy code is enforced when build­

ing pennits are issued and not when final inspections take place. Evidence suggests that the aver­

age time between initial pennitting and final inspection is about six months for residential con­

struction (Bashford et al. 2005; Burk 2008). We thus categorize residences as pre- or post-code 

change, which took effect in March 2002, as follows: EYB of 2001 or earlier designates a resi­

dence as pre-code change; EYB of 2003 or later designates a residence as post-code change; and 

EYB of 2002 designates a residence as indetenninate because the corresponding building-code 

regime is unclear. We thus drop from the analysis, unless otherwise indicated, all residences with 

an EYB of 2002.8 

We also exclude from the analysis all residences with an EYB of 1998 or earlier. These 

observations are excluded for two reasons. First, Florida's energy code also changed in Novem­

ber 1997. This means that all residences with an EYB up to and including 1997, and some of the 

7 Not included in the dataset are variables from which to identify changes in tenancy at each residence and an indica­

tor of the residence's billing cycle, which determines the day in each month when a residence's electric meter is 

read. The fact that these variables are not included in the dataset does not, however, create significant problems for 

our empirical strategy. 

8 While it is possible that some residences with an EYB of 2003 were also constructed under the pre-code regime, 

categorizing them as we do might on Iy be a concern because of the potential for attenuation bias. 


7 



residences with an EYB of 1998 (because of the lag between permitting and final inspection), 

were subject to a different energy-code regime than those with an EYB of 1999 through 2001.9 

Second, and more importantly, our empirical strategy is based on a comparison of residences 

built before and after the energy-code change. The best comparison is based on residences built 

just before and just after the code change, as this minimizes the possibility that some unobserv­

able time trend in housing construction will bias the analysis. The basic idea is that residences 

constructed at more similar points in time are likely to be more similar in terms of both their ob­

served and unobservable characteristics. 

A few more steps are necessary to clean and prepare the data. To address partial occupa­

tion of new construction, we exclude the first 12 months of utility billing data for new resi­

dences. The pattern of partial occupation for newly constructed homes is clearly seen in the data. 

For example, mean electricity use is 45 percent less in the first month than in the thirteenth 

month. While the pattern becomes less pronounced in subsequent months, until it levels off 

around month eight, we conservatively drop the first 12 months. One implication is the exclusion 

of all 47 residences with an EYB of 2006, and thus the newest residences in the data have an 

EYB of2005. Though relatively minor, we also drop residences recorded as having less than one 

story, monthly electricity observations with a negative or zero quantity, and monthly natural-gas 

observations with a negative quantity. These drops account for 3,130 observations, 256 observa­

tions, and 375 observations, respectively, or 5.8 percent of the complete dataset, which includes 

a total of 64,471 observations. 

9 Including residences with and EYB of 1998 or earlier would therefore require consideration of more than one 
change to the state's energy code. While in principle our empirical strategy would enable us to study Florida's 1997 
code change, it is complicated by the fact that the change actually made to overall code less stringent. Moreover, it 
appears that Florida's building code was not well-enforced during the 1990s. The Alachua County website reports 
that "During the early 1990's a series of natural disasters, together with the increasing complexity of building con­
struction regulation in vastly changed markets precipitated the comprehensive review of the state building code sys­
tem. The study revealed that building code adoption and enforcement was inconsistent throughout the state and 
those local codes thought to be the strongest proved inadequate when tested by major hurricane events. The conse­
quences were devastation to lives and economies and a statewide property insurance crisis. The response was refonn 
of the state building construction system which placed emphasis on unifonnity and accountability (Alachua County, 
2009)." For this reason, and because we are interested primarily in the effect increasing the stringency of energy 
codes (which is not likely to be symmetric with relaxing energy codes), this paper focuses on the 200 I code change 
alone. 
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Finally, we collect weather data from the National Climatic Data Center for the Gaines­

ville area and merge it with the monthly utility data. We download daily weather data from a 

single weather station located at the Gainesville regional airport. 10 Three variables are of interest 

for our analysis: average heating degree days (AHDD), average cooling degree days (ACDD), 

and average maximum daily humidity. Using standard practice, the reference point for calculat­

ing degree days is 65° Fahrenheit (F). When average daily temperature falls below 65° F, the dif­

ference is the number of heating degrees in a day. When average daily temperature exceeds 65° 

F, the difference is the number of cooling degrees in a day. The humidity variable is based on 

maximum relative humidity. 

We then merge the daily weather data with the monthly utility data. Because we do not 

know the billing cycle of each residence (i.e., the start and end date of each bill), we cannot 

match the daily weather data to the exact days of each utility bill. Instead, we calculate averages 

for the weather data from the 15th to the 15th of adjacent months (or the 14th in the case ofFebru­

ary) and merge these averages with the monthly billing data that matches the later 15 days over 

which the average was taken. For example, all utility bills for the month of June are matched 

with weather data averaged between May 15th and June 15th of the same year. Assuming that the 

billing cycles are uniformly distributed, this procedure maximizes the number of weather-data 

days that correspond with the days of each utility bill. It is a simple matter to verify that the 

number of correctly corresponding days ranges from a minimum of 50 percent to a maximum of 

100 percent. 

The complete dataset that we use for the analysis includes 2,239 residences among the 

64,471 monthly observations. Table 1 reports basic summary statistics. Mean electricity con­

sumption is 1,146 kilowatt-hours (kWh) per month. Mean natural-gas consumption is approxi­

mately 24 therms per month. The average residence is 2,072 square feet in size, has 2.3 bath­

rooms, 3.4 bedrooms, and 1.1 stories. Nearly all residences have central air-conditioning and a 

10 We use station number 083362 in the National Weather Service's Cooperative Station Network. This station is the 
closest one to our study area that was running continuously over the period for which we have utility data . The data 
can be downloaded at http://www.ncdc.noaa.gov/oalclimate/climateinventories.html. 
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shingled roof. ACDD is 7.6, AHDD is 3.0, and the average maximum daily humidity is 93 per­

cent. Among the residences, 1,293 were built before the energy-code change, and 946 were built 

after the energy-code change. Table 2 compares the observable characteristics of residences built 

before and after the code change. The groups are generally quite similar, with the notable excep­

tion that those built after the energy-code change are smaller by 94 square feet on average, or 

roughly 4.5 percent. The other housing characteristics with statistically significant differences 

are central air-conditioning and shingled roofs, but the magnitudes of the differences are exceed­

ingly small. 

3. Empirical Analysis 

The change in Florida's 2001 energy code combined with the Gainesville data on residential 

characteristics and utility consumption provides an opportunity to examine the effect of energy 

codes on actual electricity and natural-gas consumption. This section describes our empirical 

strategy and results. We first conduct pre- and post-code-change comparisons to estimate annual 

and monthly differences in energy consumption between residences subject to the before and af­

ter energy-code regimes. We then conduct a difference-in-differences analysis to test for energy­

code effects on differences in energy consumption due to variability in weather. Because Flor­

ida's energy code only regulates energy efficiency related to space heating, space cooling, and 

water heating, we expect that the effect of the code, if it exists, will be greatest during months 

when the demand for heating and cooling makes up a relatively greater share of a household's 

energy demand. For electricity, we expect that the effect of the code change will be greatest in 

the summer months when electricity demand for air-conditioning is at its peak. For natural gas, 

we expect that the effect of the code change will be greatest in the winter months when demand 

for natural-gas based heating is at its peak. 

3.1. Pre- and Post-Code-Change Comparisons 

We begin the before-and-after comparisons with linear regression models of the form 

10 



( I ) Yit = OCodeChangei + f3X; + lit + t:it , 

where the dependent variable Yit is either monthly electricity consumption (kWh) or monthly 

natural gas consumption (therms), depending on the model; i indexes residences; t indexes the 

month-year of the billing record; CodeChangei is an indicator variable for whether the residence 

was constructed after the energy-code change; x,. is a vector of explanatory variables, including 

the natural log of the residence's square feet, indicator variables for central air-conditioning and 

shingled roofing, and dummy variables for the number of bathrooms, bedrooms, stories, and zip 

code (of which there are nine in the dataset); lit is a month-year specific intercept that controls for 

month-to-month shocks common to all residences, such as weather fluctuations or changes in the 

price of electricity or natural gas; and E:u is a nonnally distributed error tenn. The estimate of tS is 

of primary interest, as it captures the average difference in either electricity or natural-gas con­

sumption between households built before and after the energy-code change. An estimate of 6 

less than zero would, for example, be consistent with the energy-code change causing a decrease 

in energy consumption. 

We estimate the parameters of specification (I) using ordinary-least squares (OLS). To 

account for potential serial correlation of the error terms, we report standard errors that are clus­

tered at the residence level. We also test for robustness with alternative specifications. In a more 

flexible specification, we allow for the time trend to differ by each zip code, effectively interact­

ing lit with each of the zip code dummies. We also estimate log-linear specifications of the mod­

el-and all others throughout the paper-but we do not report the results for several reasons oth­

er than brevity. First, the qualitative results are very similar to the estimates that we do report 

based on levels. Second, the log-linear specifications tend not to fit the data as well in many cas­

es. Finally, the estimate of 6 in a log-linear specification is not precisely an overall annual aver­

age because of the nonlinearity and the fact that consumption differs substantially between 

months of the year. II 

II The results of alternative specifications are available upon request. 
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Table 3 reports the estimates of specification (1) for electricity and natural gas (columns 

1 and 3), along with the additional specifications that allow the time trends to differ by each zip 

code (columns 2 and 4) . Focusing first on the electricity results, we find that the models fit the 

data well, explaining roughly 50 percent of the variation in residential electricity consumption. 

The coefficient estimates are very similar between the two specifications, one with a single time 

trend and one with zip-code specific time trends. Based on the two models, we find, after con­

trolling for observables, that households built after the energy-code change consume approxi­

mately 48 kWh/month less than households built before the energy-code change, and the result is 

statistically significant at the 95-percent level. In terms of a percentage difference, the estimates 

suggest that the energy-code changes result in a 4-percent decrease in residential electricity con­

sumption. Not surprisingly. we also find that larger residences consume more electricity, and the 

result is statistically significant. In particular, the coefficient estimates are interpreted such that, 

for example, a 10-percent increase in the square footage of a residence is associated with an in­

crease of 96 kWh, or an increase of 8.3 percent, in monthly electricity consumption. 

The qualitative pattern of results is very similar for natural gas. The models fit the data 

reasonably well, and the coefficient estimates are very stable across specifications. The coeffi­

cient estimates on the effect of the energy-code change are again negative and statistically sig­

nificant at the 95-precent level. We find that residences constructed after the code change con­

sume approximately 1.5 therms/month less, which translates into a 6.4-percent reduction in the 

consumption of natural gas. Larger residences also consume more natural gas, whereby a 10­

percent increase in square footage is associated with an increase of 2.9 therms/month, or a 1.2­

percent increase in natural gas consumption. We also find some evidence that central air­

conditioning and a shingled roof affect natural gas consumption, but the statistical significance of 

the results is weaker and perhaps questionable, as identification comes from exceedingly few ob­

servations. 

While the models presented in Table 3 provide an estimate of the code-change effects 

averaged across all months, the effects may differ in important ways among months of the year. 

Weather varies throughout the year and substantially affects demand for cooling and heating, 
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which are known to have a large influence on demand for electricity and natural gas, respec­

tively. We thus estimate expanded versions of specification (1) for electricity and natural gas as 

follows: 

(2) fit = /iCodeChangei x Montht + f3Xi + 11 + Cit, 

where Month t is a vector of dummy variables for each of the 12 months in the calendar year. The 

only difference is that we now estimate the code-change effect separately for each month of the 

year. We estimate models based on specification (2) in the same way: OLS, standard errors clus­

tered at the residence level, uniform time trend, and zip-code specific time trends. 

For simplicity and brevity, however, we summarize the main findings with two figures. 

We take the coefficients of interest in the basic specification (2)-the 6 for each month of the 

year-and report it as the percentage change from average consumption for that particular 

month. Figure 1 illustrates the electricity results for the average monthly effects along with the 

95-percent confidence intervals. The overall trend is clear: compared to residences built before 

the energy-code change, those built after consume roughly the same electricity during the colder 

months, but substantially less during the warmer months. Between April and October, all of the 

point estimates are statistically different from zero and range between 4 and 8 percent less elec­

tricity. The obvious explanation for these results is the impact of energy codes on the efficiency 

of air-conditioning, which is used during the warmer months of the year. Nearly all households 

in Gainesville have central air-conditioning, and throughout the South Atlantic region of the 

United States, air-conditioning accounts for 21 percent of residential electricity consumption 

(EIA 2006). Holding other things constant, therefore, changes in the energy code that improve 

the cooling efficiency of residences would be expected to cause electricity savings during the 

warmer, and not necessarily the colder, months of the year. The results in Figure 1 are consistent 

with this expectation. 
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The overall pattern of results for natural gas are nearly the exact opposite, as shown in 

Figure 2. Compared to those built before the energy-code change, residences built after consume 

less during the colder months-December, January, February-when the statistically significant 

point estimates range between 15 and 25 percent. But differences between the groups are not sta­

tistically significant for any of the other months during the warmer times of year. In this case, the 

candidate explanation is the impact of energy codes on the efficiency of heating. While the ma­

jority of residences in Florida use electric space-heating, many heat with natural gas, which 

comprises a substantial portion of natural-gas consumption in the winter months. It follows that, 

due to the energy-code change, improved energy efficiency with respect to heating would be ex­

pected to reduce natural-gas consumption during the winter months. 

Our analysis thus far builds a case that changes to Florida's energy code have resulted in 

reduced consumption of both electricity and natural gas. The empirical strategy is based on a 

comparison of monthly consumption in the years after the code change between residences built 

within three years before and three years after the code change went into effect. Specification of 

the empirical models seeks to account for observable characteristics that help explain variation in 

energy consumption, including square footage, central air-conditioning, shingled roof and num­

ber of bedrooms, bathrooms, and stories. Moreover, the inclusion of zip-code dummies accounts 

for unobserved heterogeneity that is common among all residences within the same zip code. A 

potential limitation of the identification strategy, however, could be the existence of a downward 

trend over time in residential energy consumption that, in our analysis, is falsely attributed to the 

energy-code change. To partially address this potential concern, we have chosen to use only resi­

dences built within only a few years (before and after) of the energy-code change. We have also 

estimated models with both uniform and zip-code specific time trends. While the estimates are 

very similar in both cases, the later is a useful robustness check because it accounts, to some ex­

tent, for spatial differences in the time trend that might be correlated with areas of predominantly 

newer or older construction. 

To further address the potential concern about a downward trend in energy consumption 

not due to the energy-code change, we estimate differences in consumption for each effective 
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year built of the residences, while controlling for the other observable characteristics. Specifi­

cally, we estimate models of the form 

(3) Yit = (}EYBi + fJX,. + J.'t + Cit, 

where EYBi is a categorical variable for the effective year built for each residence. The vector of 

coefficients () provides estimates of the average difference in energy consumption (either elec­

tricity or natural gas) for the different years of EYB. When estimating specification (3), we in­

clude residences with an EYB of 2002 and use them as the omitted category. Recall that these 

residences were excluded from the previous models because the lag between building-permit is­

suances and final inspections made it uncertain as to whether they were subject to the before or 

after energy-code change regime. But in terms of exploring a potential time trend independent of 

the energy-code change, there is no reason to exclude these observations. 

Figures 3 and 4 illustrate the coefficients of interest for electricity and natural gas, respec­

tively, along with 95-percent confidence intervals based on clustering at the residence level. l2 

Figure 3 shows no clear downward trend in electricity consumption based on the EYB from 1999 

to 2005. Moreover, even though the pre-code-change estimates appear higher than the post-code­

change estimates, none of the point estimates for any EYB on its own is statistically distinguish­

able from any other. Tumingto Figure 4, there does appear to be somewhat of a downward trend 

in natural-gas consumption for EYBs before and after the energy-code change,. but consumption 

increases rather than decreases for residences constructed immediately after the change. Just as 

we find for electricity, however, each of the point estimates shown in Figure 4 is not statistically 

distinguishable from any other. Based on these results-for both electricity and natural gas-we 

conclude that our estimates of the energy-code change on residential energy consumption are not 

simply capturing and unobserved time trend. Instead, the pre- and post-code-change comparisons 

12 As with all models, we also estimate specification (3) with zip-code specific time trends and a log-linear func­
tional fonn. We do not report these results in the main text because they follow patterns very similar to those shown 
in Figures 3 and 4. 
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appear to be capturing how the more stringent energy code causes a real decrease in residential 

electricity and natural-gas consumption. 

3.2 DifJerence-in-DifJerences 

We now use a different empirical strategy to investigate the effect of Florida's energy-code 

change on residential energy consumption. In particular, we focus on how weather variability­

the primary driver of fluctuations in residential energy consumption-may differentially affect 

pre and post code-change residences. Figure 5 illustrates the variability in the primary weather 

variables-average cooling degree days (ACDD) and average heating degree days (AHDD)-by 

month-year from 2004 through 2006. The basic pattern, as one might expect, is that ACDD 

peaks in the summer and comes close to zero in the winter months, while AHDD is zero during 

the summer months and peaks during the winter. 

As discussed previously, we combine these weather data with the billing data on electric­

ity and natural gas. With the combined dataset we estimate models for both electricity and natu­

ral gas of the form 

(4) Y,./ = P[ACDDu AHDD/, Humidity/] + ()CodeChangei x [ACDDu AHDD" Humidity/] 

+ Month/ + Year/ + JLi + Cit , 

where the indicator variable for whether the residence was constructed after the energy-code 

change is interacted with each of the weather variables; Month/ are month of the year dummies; 

Year/ are year dummies; and JLi is a residence-specific intercept. For purposes of comparison, we 

also estimate as similar specification in which the weather variables themselves, which come 

from a single weather station and are aggregated at the monthly level, are absorbed in month­

year dummies: 

(5) fi/ = ()CodeChangei x [ACDDb AHDD/, Humidity,] + liz + Cit . 
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We estimate equations (4) and (5) with the fixed-effects estimator and cluster standard errors at 

the residence level. A key feature of both specifications is the residence-specific intercept (i.e., 

the fixed effect). This controls for any unobserved, time-invariant heterogeneity among resi­

dences. If, for example, there is an unobserved trend in average energy consumption based on 

EYB, as was a potential concern with our previous estimates, then the fixed effect accounts for 

the trend with residence-specific intercepts. 

The coefficients of interest, the os on the interactions with ACDD and AHDD, are essen­

tially difference-in-differences estimates of how residences before and after the energy-code 

change differ in their energy consumption responses to changes in weather. If the energy-code 

changes do in fact have an effect, we would expect the before- and after-residences to differ in 

their responses given that the code changes were designed to improve energy efficiency and that 

variability in weather is known to be the primary determinant of changes in residential energy 

consumption. Based on both intuition and the results of the monthly before-and-after compari­

sons, we have strong priors about one of the coefficients in both the electricity and natural gas 

estimates of specifications (4) and (5). With respect to electricity, if the energy-code changes are 

having the intended effect, we would expect residences constructed after the code change to be 

less responsive to increases in ACDD. This follows because air-conditioning, which is used more 

intensely with more ACDD, would be more efficient in the after-code change residences. With 

respect to natural gas, we would expect after-code-change residences to be less responsive to in­

creases in AHDD. This follows because natural-gas based heating, which is used more intensely 

with more AHDD, would be more efficient in the after-code-change residences. 

The first two columns of Table 4 report the electricity estimates of specifications (4) and 

(5). Focusing first on the uninteracted weather variables in column (1), which apply to the before 

code-change residences, we find that the coefficients have the expected signs . Electricity con­

sumption is increasing in ACDD, AHDD, and humidity, and these results are all consistent with 

electricity being the primary energy source for cooling and heating of Florida residences. Based 
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on the interaction with CodeChange, we find that the electricity consumption of post-code­

change residences is less responsive to an increase in ACDD. In particular, the marginal effect 

of a one unit increase in ACDD is 204 kWh/month smaller for post-code-change residences, 

which is a 7 A-percent decrease in responsiveness to ACDD relative to the response of pre-code­

change residences, which was 32044 kWh/month. Hence, consistent with our previous monthly 

results, the energy-code changes appears to have improved residential air-conditioning effi­

ciency. In contrast, the estimated effect with respect electricity and AHDD suggests that the af­

ter-code-change residences are less efficient with respect to electric heating. This result is consis­

tent with builders meeting the requirements of the code change by installing windows with a re­

duced SHGC, because a loss in heating efficiency is a tradeoff that comes with improving cool­

ing efficiency through a reduction in the SHGC of windows. While the magnitude of the differ­

ence in the marginal effect of AHDD is substantial, the overall impact is less important because 

heating degree days are far less frequent in Florida, as shown in Figure 5. The results for specifi­

cation (5) are similar, though the magnitUdes of the differences between pre- and post-code­

change residences are even larger. 

Turning now to the natural gas results, we find again that the uninteracted weather vari­

ables in column (3) have the expected signs. The largest source of variability in natural-gas con­

sumption would be due to its use in heating, which explains why consumption is increasing in 

AHDD and decreasing in ACDD and humidity. Based on the interactions with CodeChange, the 

results suggest that post-code-change residences are more efficient with respect to natural-gas 

consumption for heating. When an increase in AHDD causes an increase in natural gas consump­

tion for pre-code-change residences, the effect is less so for post-code-change residences. In par­

ticular, the marginal effect differs by 1.3 therms/month, which is substantial at 58 percent. Fur­

thermore, when an increase in ACDD causes a decrease in natural-gas consumption for pre-code­

change residences, which is likely due to less demand for heating, the decrease is even more so 

for post-code-change residences. In this case, the marginal effect differs by 0.1 therms/month, 

which is roughly 43 percent. These results are also robust to specification (5) where the coeffi­

cient estimates on the interaction terms of interest are nearly identical. 
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4. Costs and Benefits 

We now consider the costs and benefits of the increased stringency of Florida's residential en­

ergy code. Our calculations apply directly to the study area of Gainesville, Florida in the state's 

northern climate region. We compare costs and benefits at the level of a single residence. The 

costs consist of increased compliance costs with the more stringent code, while the benefits con­

sist of lower expenditures on utility bills and avoided social costs of air-pollution emissions. 

Estimating the increased compliance costs is not straightfolWard, in general, because the 

policy is a whole building, performance-based code that does not require specific features of new 

construction; instead, what matters is the overall efficiency of a residence compared to the base­

line home. As explained in Section 2, the major change to the baseline home that applies in the 

northern climate region is the reduction in the Solar Heat Gain Coefficient (SHGC) on windows 

from 0.61 to 0.4. For simplicity we assume that builders meet the new code standard by making 

the same change as that made to the baseline home. 13 In practice, reducing the SHGC on residen­

tial windows requires purchasing windows with a low-emissivity, or "low-E," coating. Windows 

with a low-E coating typically cost between 10 and 15 percent more than regular windows (US 

DOE 2009b). Following the assumptions of Fairey and SOlme (2007), we assume that a standard 

Florida home has 400 square feet of windows, which is equivalent to approximately 27 double­

hung 60x30-inch windows. Assuming a standard window costs $250, supplying a house with 

low-E windows would add between $675 and $1012 to overall construction costs. 14 

To compare against the higher construction costs are the benefits of lower utility bills for 

both electricity and natural gas. Referring back to Table 3, our estimates of the monthly energy 

savings are approximately 48 kWh and 1.5 therms for electricity and natural gas, respectively. 

\3 This approach is the most tractable way to conduct the cost-benefit analysis, but it may lead to an overestimate of 
the compliance costs, as builders are able to exploit the flexibility of the code to comply with the change at a lower 
cost. Additionally, if builders tended to over-comply with the initial energy code and only a subset of builders had 
to take on additional costs to meet the new code, our approach would provide an overestimate of the compliance 
costs. 
\4 As a point of comparison, the least expensive double-hung window on the website of the popular window-maker 
Anderson Corporation is priced at $271. 
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This implies an average annual savings of 576 kWh and 18 therms. The current prices that Gai­

nesville Regional Utilities (GRU) charges for electricity are 3.5 cents/kWh for off-peak electric­

ity and 13.9 centslkWh for on-peak electricity. Depending on when the reduced electricity de­

mand occurs, therefore, the average household saves between $20.16 and $80.06 per year on its 

electricity bill. There is a single, constant price for natural gas at 48.3 cents/therm, which implies 

an annual savings of $8.69 per year. Hence the combined savings on electricity and natural-gas 

utility bills falls between approximately $29 and $89 per year. It follows that even under the very 

best-case scenario---a 10-percent premium for low-E windows, all electricity savings occurring 

on-peak, and a zero discount rate-the private payback period is roughly 7.5 years. 

From a social perspective there are also benefits associated with a reduction In alr­

pollution emissions. We estimate these benefits using a standard benefits-transfer approach for 

four categories of emissions: carbon dioxide (C02), sulfur dioxide (S02), nitrous oxide (NOx), 

and particulates (PM2.5). With respect to electricity, we calculate emission rates for CO2, S02, 

and NOx for GRU using the US Environmental Protection Agencies (US EPA) eGRIDweb soft­

ware. 15 Because eGRIDweb does not provide emission rates for PM2.5, we obtain the estimate 

from Conners et at. (2005), which is a 2002 estimate that applies to Florida more generally.16 

With these emission rates in hand, we calculate the change in emissions using our estimates in 

Table 3 for the reduction in electricity demand. We multiply the estimate of 48 kWh/month by 

12 and the emission rate for each pollutant to estimate the annual change in emissions. Finally, 

we use marginal damage estimates for each of the pollutants to monetize the benefits of avoided 

damages. For S02, NOx, and PM2.5 emissions, we use high and low estimates specifically for 

Alachua County, Florida based on Muller and Mendelsohn's (2007) Air Pollution Emission Ex­

periments and Policy (APEEP) analysis model. For C02 emissions, we use low and high esti­

mates of the social cost of carbon from Stem (2007) and Nordhaus (2008), respectively. The re­

15 The software is available online at http://cfpub.epa.gov/egridweb/. Rates are based on the location (operator)­
based level of data aggregation for the most recent year of 2005 configured for industry structure through 2007. 
16 The Conner's et al. (2005) estimate is calculated by matching plant-level data on emission totals from US EPA's 
National Emissions Inventory (NEI) database to plant-level data on heat rates from eGrid. The authors then use this 
relationship to estimate the average emissions rate for PM2.5 for the entire Florida Reliability Coordinating Council 
(FRCC) Region. 
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suIts for avoided damages from the reduction in electricity consumption, which range between 

approximately $13 and $74 per residence per year, are reported in the first two columns of Table 

5. 

With respect to natural gas, our estimates in Table 3 for the reduction in consumption due 

to the energy-code change are very close to 1.5 therms per month, or 18 therms per year. To mo­

netize the avoided damages for S02, NOx, and PM2.5 emissions, we rely on recent estimates by 

region for the marginal damages of residential natural gas use for heat (NRC 2009). Within the 

south region of the United States, we use the 25 th and 75th percentile estimates of the marginal 

damages for low and high cases, respectively. For C02 emissions, we use NRC's (2009) estimate 

that burning one therm of natural gas generates 0.006 tons of C02 combined with the low and 

high marginal damages described above. The results for avoided damages from the reduction in 

natural-gas consumption are reported in the in the middle columns of Table 5, and considering 

all four pollutants, the low and high estimates are approximately $1 and $10 per residence per 

year. 

The last two columns of Table 5 report the combined avoided social damages for the re­

ductions in both electricity and natural-gas consumption. While the overall estimates range be­

tween $14 and $85 per residence per year, reductions C02 and S02 account for the vast majority 

of benefits. Under the best-case scenario described above, along with the high estimates for 

avoided emission damages, the social payback period reduces to just under 4 years. Nevertheless, 

one might argue that the benefits associated with lower C02 emissions should not be considered 

in such cost-benefit calculations, as they are likely to occur for the most part outside the policy 

jurisdiction. Adjusting the payback period to exclude the C02 benefits, we find that the best pos­

sible social payback period is just over 6 years. 

4. Discussion 

We are not aware of any existing study that uses residential billing data to evaluate the effect of 

energy codes on electricity and natural-gas consumption. Perhaps the reason is that such studies 

face significant challenges. Among them is the need to find an appropriate set of "control" resi­
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dences against which to compare "treatment" residences. One option, the standard difference-in­

differences approach, is to use residences from a neighboring area that were not subject to the 

same energy-code change and estimate how the "before" and "after" energy consumption differs 

between the two groups. The general concern with this approach, however, is that time trend in 

important observable and unobservable variables may differ between the two groups for reasons 

unrelated to the treatment, leaving models susceptible to bias. Another concern, more specific to 

energy codes, is that nearby treatment and control areas may not be entirely independent. For 

example, Horowitz (2007) analyzes the effect of state commitments to energy-efficiency pro­

grams on residential electricity consumption and finds evidence that spillovers from the pro­

grams are rapid and ubiquitous. Hence energy codes that change construction patterns in one 

area are likely to produce spillover effects on construction patterns in other, nearby areas. 

The present paper estimates the effect of an energy-code change based on comparisons 

between residences in the same area constructed within three years before and three years after 

the code change, comprising the control and treatment groups, respectively. Using only monthly 

utility bills for the years after the code change, we employ two empirical strategies for both elec­

tricity and natural gas: comparisons of mean energy consumption, and differences in the respon­

siveness of energy consumption to variability in weather. The first approach produces our main 

results, which are that the energy-code change appears to have caused a 4-percent decrease in 

annual electricity consumption and a 6-percent decrease in annual natural-gas consumption. 

Moreover, differences in the savings by month are consistent with reduced consumption of elec­

tricity for air-conditioning and reduced consumption of natural gas for heating. The key identifi­

cation assumptions, however, are that we appropriately control for the observable characteristics 

of each residence and that no unobservable characteristics differ between the pre- and post-code­

change residences in ways that significantly affect energy consumption. 

The primary advantage of our second empirical strategy is that we are able to control for 

unobservable, time-invariant heterogeneity among residences and still test for differences be­

tween those constructed pre- and post-code-change. Specifically, the fixed-effects models ac­

count for average differences in consumption among residences and test for differences in re­
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sponse to weather variability, the main driver of fluctuations in energy demand. One interpreta­

tion of these models is as a robustness check against the other estimates of monthly differences 

explained by energy demand due to heating and cooling. If the energy-code change increases ef­

ficiency, then consistency between approaches would imply that more cooling degree days and 

heating degree days should be associated with less of an increase in electricity and natural-gas 

consumption, respectively, for the post-code-change residences. This is, in fact, precisely what 

we find. 

Are there any alternative explanations for our empirical findings? One possibility is that a 

shift from natural-gas to electric heating, caused for reasons independent of the code change, is 

driving some of the results. This could explain, for example, the lower natural-consumption, es­

pecially during cold months, of the post-code-change residences and the downward, though sta­

tistically insignificant, trend in Figure 4. Although this explanation is not consistent with anecdo­

tal evidence about new construction in Florida, it would be ideal to control for this possibility 

with data on the type of heating of residences within our sample. Unfortunately these data are not 

available. We have nevertheless begun using the annual profiles of natural-gas and electricity 

consumption of each residence in order to infer its type of heating. With this information, we will 

be able to re-estimate models on subsets of the data to test whether our findings are robust within 

residences with different types of heating. Preliminary results suggest that they are, but more 

needs to be done. 

How do our results compare to those of an engineering simulation model? According to 

EnergyGauge (2002), the energy-code change in Florida's northern climate region is predicted to 

cause a 4-percent increase in energy efficiency standards for space heating, space cooling, and 

water heating. But because these sources of energy demand account for only half of the energy 

demand for a typical Florida residence (Cushman 2008), the change in code stringency translates 

into a 2-percent increase in overall energy efficiency. This estimate is comparable to our empiri­

cal findings of a 4-percent savings for electricity and a 6-percent savings for natural gas . We now 

discuss a few reasons why the empirically estimated effects might plausibly be larger than the 

simulated predictions. First, energy-code changes are likely to generate spillover effects on con­

23 




struction patterns across regions, as discussed above. While our control and treatment groups are 

from the same area located within Florida's northern climate region, more substantial changes 

occurred at the same time in the state's central and southern climate regions. It is possible that 

changes in the other regions caused a general shift in residential construction practices that re­

sulted in more over-compliance with the energy code in the northern climate region. Second, 

there appears to have been confusion over what exactly the change in Florida's building code 

meant for builders. Several sources suggest that builders interpreted changes to the code as pre­

scriptive requirements rather than components that could be traded off in the overall perform­

ance-based metric. 17 This would, in practice, result in over-compliance with the energy code. 

Finally, new standards of the National Appliance Energy Conservation Act (NAECA) took effect 

in July 200] and increased the efficiency standard for refrigerators. Fairey and Sonne (2001) 

predict that these new standards decrease electricity demand of a typical Florida residence by 

12.5 kWh/month. Applying this adjustment to our estimates would imply a decrease in electricity 

consumption of 3 percent, which is closer to the simulated prediction of the engineering simula­

tion. 

5. Conclusion 

In response to the 1973 oil embargo, many U.S. states began passing building energy codes in 

order to promote energy efficiency. While the vast majority of states have energy codes in place, 

policymakers are now attempting to legislate energy codes at the federal level to help address 

heightened concern about energy and climate change. Despite widespread implementation of en­

ergy codes and calls for greater stringency in the future, surprisingly little is known about 

whether energy codes are an effective way to reduce energy consumption. Engineering simula­

tions provide most of the evidence, but simulated predictions, even if based on sound models, do 

17 For example, The National Fenestration Ratings Council published an article in its widely-read magazine NRFe 
Update in January that reported that the "Florida prescriptive requirements will require SHGC of 0.40 for all win­
dows in the state effective January 2002." Additionally, a brochure entitled "The Florida Building Code and the 
Florida Home Builder" that contained a number of errors regarding the code change was distributed to attendees of 
the Southeastern Builders Conference held in Orlando in July 2001. The errors were later explained on the Energy­
Gauge (2002) website, but they demonstrate considerable confusion about energy code requirements that could re­
sult in over-compliance. 
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not account for enforcement, compliance, and behavioral responses. Hence there is an important 

and timely need for empirical research that uses field data to more fully evaluate the effects of 

energy codes on energy consumption. 

The primary contribution of this paper is the evaluation of Florida's residential energy­

code change based on actual billing data for both electricity and natural gas. Using residences in 

the city of Gainesville, we find that the code is associated with a 4-percent decrease in electricity 

consumption and a 6 percent decrease in natural-gas consumption. Moreover, the pattern of sav­

ings is consistent with reduced consumption of electricity for air-conditioning and reduced con­

sumption of natural gas for heating. Though direct comparison with engineering simulations is 

challenging, our estimates are reasonably close those used by the state of Florida and thereby fur­

ther general confidence in the reliability of simulated predictions. We also estimate economic 

costs and benefits of the energy-code change. We find that, under the best-case scenario, the pri­

vate payback period for the average residence is 7.5 years. The social payback period, which ac­

counts for the avoided costs of air-pollution emissions, ranges between 4 and 6 years, depending 

on whether avoided damages from carbon dioxide are included. 

Given the policy relevance of understanding the current and potential impact of energy 

codes, it is worthwhile to conclude with comments about the generalizability of our results. The 

obvious limitation ofthe evaluation is that it applies to a particular policy in a particular location. 

Our selection of Gainesville and therefore Florida's energy code is based entirely on data avail­

ability that coincides with an energy-code change. Nevertheless, Gainesville, Florida might be 

considered an opportune place to study the impact of energy codes for several reasons. First, if 

trying to gauge the potential of energy codes, Florida is a good candidate state to study because it 

is known to have generally strict enforcement of building codes, due to the risks of major hurri­

cane events. Second, because Gainesville is located in the northern climate region of Florida, 

where the energy-code changes were less stringent, it is likely, as predicted by the simulation 

models, that the impacts of the state-wide code change are even greater in the central and south­

ern climates regions of the state. Third, 22 percent of all U.S. residences are in the same national 

climate region as Gainesville (EIA 2009), meaning that energy-code effects in Gainesville might 
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be somewhat representative of how energy codes affect more general regions of the county, in­

cluding all states that border the Gulf of Mexico, as well as parts of Georgia, South Carolina, Ar­

kansas, Oklahoma, southern California and western Arizona. As for more northern climates, 

where demands for heating and cooling are substantially different, along with the mix of energy 

sources, we leave to future research the question of how energy codes affect actual energy con­

sumption. But the methodology outlined in this paper should serve as a useful and replicable 

template for how studies can be carried out in other areas. 
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Figure 1: By month percentage difference in electricity consumption between residences constructed 
before and after the energy-code change 
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Figure 2: By month percentage difference in natural gas consumption between residences constructed 
before and after the energy-code change 
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Figure 3: Differences is mean electricity consumption by effective year built based on specification (3) 
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Figure 4: Differences is mean natural consumption by effective year built based on specification (3) 

30 




1£ 


900l-vOOl 'Jeai\-lHuow i\q salqe!Jei\ JalHeaM JO i\l!I!qe!Je/\ :g aJnfi!.:I 

Jea,{ all! 10 41uOW 

O~ ~c., ,,<:!> -.4~ -.4~ ,4' O~ ~c., ,,<:!> -.4~ ,4~ -.4' O~ ~c., ,,<:!> -.4~ -.4~ ,4' 
~ 0' ~ ~ ~ ~ 0' ~ ~ ~ ~ 0 ., ~ ~ ~ 

9 

B 

O~ 

• 9~ 

OOH'<I····· 

008'<1-­

o 
11) 

co 

re 
o 
II> 
'<.. 

- 01: 



Table 1: Summary statistics 


Variable Mean St.Dev Min. Max. 

Electricity (kWh) 1146.352 736.230 1 9138 
Natural gas (therms) 23.633 30.353 0 661 
Effective year built (EYB) 2000.931 1.895 1999 2005 
Square feet 2072.541 764.191 784 7465 
Bathrooms 2.279 0.574 1 6 
Bedrooms 3.359 0.621 2 5 
Stories 1.126 0.335 3 
Central air-conditioning 0.997 0.058 0 
Shingled roof 0.993 0.085 0 
Billing year 2005.130 0.807 2004 2006 
Billing month 6.658 3.427 12 
Average cooling degree days (ACDD) 7.623 6.552 0.065 17.548 
Average heating degree days (AHDD) 3.035 3.834 0.000 11 .452 
Average max. dailz:: humidi!l:: 92.912 2.142 83.906 97.625 
Summary statistics are based on 64,471 observations. 

Table 2: Characteristics of residences built before and after the energy-code change 

Before After Difference 

Variable code change code change (after-before) t-stat. 

Square feet 

Bathrooms 

Bedrooms 

Stories 

Central air-conditioning 

Shingled roof 

2084.917 
(785.889) 

2.276 
(0.577) 
3.360 

(0.628) 
1.132 

(0.343) 
0.998 

(0.039) 
0.995 

(0.073) 

1990.758 
(694.664) 

2.266 
(0.537) 
3.329 

(0.597) 
1.104 

(0.305) 
0.993 

(0.086) 
0.990 

(0.097) 

-94.159 

-0.010 

-0.032 

-0.029 

-0.006 

-0.004 

2.939 

0.405 

1.202 

1.138 

2.163 

2.043 

The data include 1,293 residences built before the code change and 946 residences built af­
ter the code change. Standard deviations are reported in parentheses. 
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Table 3: Pre- and post-code-change comparisons for electricity and natural-gas consumption 

Code Change 

In(Square feet) 

Central air-conditioning 

Shingled roof 

Electricity 
(1 } (2} 

-47.617** -48.922** 
(20.140) (20.295) 

958.940*** 961 .065*** 
(54.670) (54.928) 
-79.674 -80.463 

(142.365) (143.622) 
165.682 164.447 

(115.582) (115.827) 

Natural gas 
(3} (4} 

-1.446** -1.572** 
(0.701 ) (0.704) 

29.779*** 29 .846*** 
(1.880) (1 .874) 
-2.509* -2 .362* 
(1.282) (1.408) 
6.946* 7.196* 
(3.876) (3.887) 

Bathroom dummies 
Bedroom dummies 
Stories dummies 

Yes 
Yes 
Yes 

Yes 
Yes 
Yes 

Yes 
Yes 
Yes 

Yes 
Yes 
Yes 

Zip code dummies 
Month-year dummies 
Zip code x month-year dummies 

Yes 
Yes 
No 

Yes 
Yes 
Yes 

Yes 
Yes 
No 

Yes 
Yes 
Yes 

R-Squared 
Observations 

0.499 
64,471 

0.514 
64,471 

0.452 
64,471 

0.481 
64,471 

Standard errors are reported in parentheses and are clustered at the residence level. 

One, two, and three asterisks indicate significance at the p < 0.10, P < 0.05, and p < 

0.01 level, respectively. 
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Table 4: Difference-in-differences estimates for electricity and natural-gas consumption 
due to weather variabil ity 

Electricit;t Natural Gas 
{1 } {2} {3} {4} 

Code Change x ACDD -2.392** -3.853*** -0.123** -0.123** 
(1.127) (1.171) (0.049) (0.050) 

Code Change x AHDD 2.652* 3.230** -1 .334*** -1.133*** 
(1.413) (1.419) (0.156) (0.157) 

Code Change x Avg. Humid. -0.279 1.786 -0.257*** -0.193** 
(1 .223) (1.236) (0.091 ) (0.093) 

ACDD 32.411 *** -0.284*** 
(0.967) (0.044) 

AHDD 6.426*** 2.309*** 
(1.294) (0.111) 

Humidity 4.361*** -0.119*** 
(0.742) (0.040) 

Month dummies Yes No Yes No 
Year dummies Yes No Yes No 
Month-year dummies No Yes No Yes 
Residence fixed-effects Yes Yes Yes Yes 

R-Squared 0.522 0.533 0.456 0.462 
Observations 64,471 64,471 64,471 64,471 

Standard errors are reported in parentheses and are clustered at the residence 
level. One, two, and three asterisks indicate significance at the p < 0.10, P < 0.05, 
and p < 0.01 level, respectively. 

Table 5: Social benefits of avoided emissions from reduced electricity and natural-gas consumption 

Electrici!y' Natural gas Combined 
Low $ High $ Low $ High $ Low $ High $ 

Carbon Dioxide (C02) 4.37 53.12 0.83 10.12 5.21 63.24 
Sulfur Dioxide (S02) 7.90 19.65 0.00 0.01 7.90 19.66 
Nitrous Oxide (NOx ) 0.75 1.17 0.09 0.23 0.84 1.40 
Particulates (PM2.5) 0.20 0.53 0.00 0.01 0.21 0.54 
Total 13.23 74.47 0.92 10.37 14.15 84.84 
Benefits are reported in $2009s. Methods of derivation and explanations of low and high scenarios are 
included in the main text. 
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