DRAFT FINAL Report:

Project #: P0091032

Submitted to:
Florida Department of Business and Professional Regulation
with Building a Safer Florida, Inc.

Mo Madani, Program Manager
Building Codes and Standards
1940 North Monroe Street
Tallahassee, Florida 32399

Prepared by:

David O. Prevatt, Ph.D., PE (MA)
Principal Investigator
Associate Professor (Structures)

T. Eric Stafford
T.E. Stafford & Associates

Rebecca Quinn
RCQuinn Consulting, Inc.

Peter Vickery, PhD
Applied Research Associates

Engineering School of Sustainable Infrastructure and Environment
Department of Civil and Coastal Engineering
University of Florida
365 Weil Hall
P.O. Box 116580
Gainesville, FL 32611-6580

Report No. 04-19
2 December 2019
DISCLAIMER

The material presented in this research report has been prepared in accordance with recognized engineering principles. This report should not be used without first securing competent advice with respect to its suitability for any given application. The publication of the material contained herein does not represent or warrant on the part of the University of Florida or any other person named herein, that this information is suitable for any general or particular use or promises freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability for such use.
EXECUTIVE SUMMARY

This research led by the University of Florida in coordination with several other groups will provide the latest knowledge available for evaluating enhance building construction provisions for Storm surge and floods and extreme wind conditions generated by hurricanes in Florida. The recommendations will be based upon site-specific hazard risk maps developed for the coastal counties.

This final report provides the deliverables scope of work, and the approach to be taken by the three respective consultants.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>iii</td>
</tr>
<tr>
<td>1 Overview and Scope of Work</td>
<td>7</td>
</tr>
<tr>
<td>2 Background</td>
<td>7</td>
</tr>
<tr>
<td>3 Goals</td>
<td>8</td>
</tr>
<tr>
<td>4 Motivation and Purpose</td>
<td>8</td>
</tr>
<tr>
<td>5 Relevant Sections of the Code (& related documents)</td>
<td>10</td>
</tr>
<tr>
<td>6 Site Specific Hazards Tasks</td>
<td>12</td>
</tr>
<tr>
<td>7 Optional ENHANCED Storm surge and Flood Provisions</td>
<td>13</td>
</tr>
<tr>
<td>8 Optional ENHANCED WIND HAZARD Provisions</td>
<td>15</td>
</tr>
<tr>
<td>9 Structure of the Report</td>
<td>16</td>
</tr>
</tbody>
</table>

Appendix A. Hurricane Wind Speed Simulation for the 63 State of Florida Counties (Applied Research Associates) ... 17

Appendix B. Optional Enhanced Construction Techniques for Flood, and Storm Surge Provisions of the Florida Building Code (RCQuinn) ... 18

Appendix C. Optional Enhanced Construction Techniques for Wind Design Provisions of the Florida Building Code (Stafford) ... 19
List of Figures

Figure 1. – Exceedance probability curve for single-family dwellings in Florida, as modeled by the RMS® U.S. Hurricane Model (Young, 2009) ... 9

Figure 2. – Timeline of 30 years Hazard Mitigation .. 10
1 OVERVIEW AND SCOPE OF WORK

The Division of Business and Professional Regulation on behalf of the Florida Building Commission contracted with the University of Florida, Engineering School of Sustainable Infrastructure and Environment (ESSIE) shall review the literature on the 2007 Florida Legislature bills on wind protections revising specific Building Code provisions. The intent of this research is to compare current building code provisions of the 2017 Florida Building Code, with stipulations and guidelines developed by Applied Research Associates and others.

The project will be led by David O. Prevatt, Associate Professor of Civil Engineering. There are three consultants who have agreed to contribute their knowledge to this research project, listed below:

- Dr. Peter Vickery, Applied Research Associates, Raleigh, NC (Site-specific hazard risks)
- Rebecca Quinn, RCQuinn Consulting, Inc. (Flood and Storm Surge Hazards)
- T. Eric Stafford, T.E. Stafford & Associates (Extreme Wind Hazards)

2 BACKGROUND

In 2007 the Florida State Legislature passed a number of bills revising specific Building Code Provisions to enhance the wind protections of structures (FBC, 2007). The provisions established a voluntary Code-Plus guide to increase the hurricane resistance of buildings. The University of Florida and Applied Research Associates developed insurance qualifying criteria for buildings located within 2,500 ft of the coast (Applied Research Associates, Inc., 2008). The Code-Plus recommendations were simple, understandable and easily communicated and it included three modifications:

- Single wind speed per county based on a 500-year recurrence interval hurricane,
- High Velocity Hurricane Zone protection for wind-borne debris, and
- Building elevations based on FEMA 500-year recurrence interval hurricane flood elevations.
In 2019, the Department of Business and Professional Regulation (DBPR) reconsidered the needs for developing guidelines for Enhanced building Construction practices based upon a collection of the latest research and applications available. The effort for this enhancement of design and construction procedures were highlighted by prior post-hurricane damage assessment reports that identified good performances of some structures among many others that performed poorly in high winds and storm surge. It became clear that many Florida homeowners are already implementing construction techniques that good beyond the minimum requirements included in the Building Codes. The decision to assemble as many of the well-known design and construction procedures and guidelines in a single document is seen as a benefit to assist building officials, contractors and homeowners navigate through multiple documents.

3 GOALS

The goals of this research are the following:

1. Review the prior Code-Plus stipulations and guidelines and compare the effectiveness of previous provisions in the reviewed documents against current Building Code provisions.

2. Extract and analyze data from the data set of building observations made during Hurricanes Irma and Hurricane Michael studies and create a subset of structures built to Code-Plus provisions.

3. Develop and present recommendations to the FBC for a Codes-Plus Provisions for Florida in order to explicitly provide an enhanced construction option to the Florida Building Code.

4 MOTIVATION AND PURPOSE

Providing Florida residents with enhanced design options for their houses can be another provision to guide building owners and address the current and future risks of hurricane related building damage. The public in many cases misunderstand that building code provisions represent only a minimum standard and as consumers and owners of their property, that they are at liberty to build to higher standards. By explicitly providing an enhanced construction option the Building Code, as it has been done in 2013 by
Georgia State (Georgia State IRC, 2013), could serve to change that erroneous perception.

In 2018 the US Census Bureau estimates that Florida has just over 9.5 million single-family residential houses and 4.9 million of those houses (as of 2009) are considered vulnerable to extreme winds, because they were built before implementation of the Florida Building Code in 2002.

Building to higher standards has benefits of reducing the vulnerability of a structure and potentially reducing or minimizing wind or storm surge damage. Figure 1 illustrates how rebuilding all of the single-family dwellings in Florida to a more stringent building construction standard, such as the IBHS FORTIFIED Home (IBHS, 2019) and FORTIFIED Commercial (IBHS, 2019) programs, can reduce risk.

![Figure 1](image)

Figure 1. – Exceedance probability curve for single-family dwellings in Florida, as modeled by the RMS® U.S. Hurricane Model (Young, 2009)

Research at state and federal levels has shown substantial benefits of strengthening houses; in one study for one dollar ($1) spent on structural retrofit a homeowner may benefit by the avoidance of up to $6 dollars in future storm damage (National Institute of Building Science, 2019).

According to (FEMA, 2019), the total number of properties mitigated through Hazard Mitigation Assistance grants exceeds 138,000.
This proposal reviews the prior Code-Plus stipulations and guidelines that were developed by Applied Research Associates, and IBHS and implemented by the Florida Building Commission in or around 2007. New data set of building observations made during Hurricanes Irma and Hurricane Michael studies will be used to create a subset of structures built to Code-Plus provisions. Based on the analyzes of the performance of the Code-Plus houses against a group of similar houses that were subject to the same wind speeds the new recommendations to the FBC for a Codes-Plus Provisions for Florida will be developed and presented.

5 RELEVANT SECTIONS OF THE CODE (& RELATED DOCUMENTS)

Related Documents

• FORTIFIED Home, FORTIFIED for Safer Living (existing & new construction): Fortified Home Hurricane Standards (IBHS, 2019).
• FORTIFIED Commercial, FORTIFIED for Safer Business: Fortified Commercial Hurricane Standards (IBHS, 2019).
• Federal Alliance for Safe Homes (FLASH) Blueprint for Safety (Federal Alliance for Safe Homes, Inc., 2010).
• Set of code-plus recommendations to increase the tornado resistance of wood-framed dwellings developed by Simpson Strong-Tie Company, Inc. (Simpson Strong-Tie Company, Inc., 2015)
• Federal Emergency Management Agency
 o FEMA Successfully Retrofitting Buildings for Wind Resistance – Hurricane Michael in Florida Recovery Advisory 1, 1 June 2019; FL-RA1
• Other Documents Potentially for consideration?
 o FEMA p-55
 o FEMA P-424
 o FEMA P499
 o FEMA MAT Reports (2017 and 2018)
 ▪ Florida
 ▪ Texas
 ▪ US Virgin Islands
 ▪ Puerto Rico
6 SITE SPECIFIC HAZARDS TASKS:

The scope of ARA’s work is delineated in their proposal:

September 18, 2019

David O. Prevatt, Ph.D., PE (MA)
Associate Professor
Eng. School Sustainable Infrastructure and Environment
University of Florida
365 Weil Hall, Gainesville, FL 32611

Dear David:

In this effort, ARA will provide hurricane wind speeds at one location in each of the 63 Counties in the State of Florida. The locations will be provide by the University of Florida. Wind speeds will be given for return periods of 50, 100, 300, 700, 1,700 and 3,000 years. All wind speeds will be produced using ARA’s hurricane simulation model updated to include all storms through 2018.

A brief report outlining the approach used to develop the wind speeds will be presented, along with comparisons to the wind speeds given in the current version of ASCE as given by the ATC Hazards by Location tool (https://hazards.atcouncil.org). The study will be completed within one month of authorization to proceed. The work will be performed for a firm fixed price of $17,000.00

Sincerely,

[Signature]

Peter J. Vickery, Ph.D., PE
Principal Engineer

Outline

1. Introduction
2. Hurricane Simulation Model Overview
3. Updates to Changes to Hurricane Simulation Model Since ASCE 7-16
4. Predictions of Hurricane Induced Wind Speeds at Key Locations in Coastal Counties
7 OPTIONAL ENHANCED STORM SURGE AND FLOOD PROVISIONS:

The scope of RCQuinn Consulting Inc. (RCQuinn) work is appended their 13 September 2019 proposal, below:

September 13, 2019

David O. Prevatt, Ph.D., PE (MA)
Engineering School Sustainable Infrastructure and Environment
University of Florida
365 Weil Hall
Gainesville, FL 32611

Dr. Prevatt:

Enclosed please find the proposed scope of work and level of effort and cost estimate for my contributions to the referenced investigation.

Sincerely,

Rebecca C. Quinn
RCQuinn Consulting, Inc.
September 13, 2019

SCOPE OF WORK

The following is based on the document titled <Final SOW showing changes_08-28-19.docx>. To support the referenced project, RCQuinn will:

1. Review literature identified by DBPR and FLASH and other publications pertinent to flooding in Florida.

2. Identify, review and summarize recent reports and publications that relate damage caused by flooding to requirements for the design and construction of buildings in flood hazard areas, notably Mitigation Assessment Team reports published by FEMA after Hurricanes Irma and Michael, the 2004 hurricanes in Florida, and Hurricane Sandy in New York and New Jersey.

3. Review previous reports (“datasets”) prepared by the University of Florida with regard to content pertinent to structures damaged by flooding/storm surge.

4. Prepare a brief summary of the flood provisions in the FBC and how those requirements have changed since the 2010 edition. For the most part, the changes originated in the International Codes. This content is readily available in existing publications.

5. Conduct a limited search for ways states and communities have “enhanced” requirements for buildings in locations exposed to flooding, especially coastal locations exposed to storm surge flooding. FEMA and the Association of State Floodplain Managers produce publications describing the benefits of strengthening regulations.

6. Contribute to interviews of building officials and contractors.

7. Develop and present options for enhancing the flood provisions of the FBC, with descriptions and summaries of available information on the benefits and costs of each option. A joint FEMA-International Code Council publication describes recommendations and offers code change language for the most common code amendments to strengthen codes.

LEVEL OF EFFORT AND COST ESTIMATE

Not to exceed 90 hours at $175/hour for a maximum of $15,750.
The scope of T.E. Stafford and Associates (Stafford) is delineated in their 22 October 2019 proposal, shown below:

October 22, 2019

To: David Prevatt
University of Florida

From: T. Eric Stafford
T. Eric Stafford & Associates, LLC

This letter serves to acknowledge that T. Eric Stafford agrees to serve as a consultant to the University of Florida on the project to develop optional enhanced construction techniques for the wind, flood, and storm surge provisions of the Florida Building Code. It is my understanding I will be developing criteria for enhanced construction techniques for buildings that would reduce damage to buildings from hurricane wind loads and water intrusion due to wind driven rain. To develop the criteria, I will perform the following tasks:

- Compare the strength of the wind requirements in the literature identified by DBPR, BASF, and its staff with the Florida Building Code, 6th Edition (2017)’s wind requirements.
- Compare the wind requirements in the literature with any changes to the wind requirements for the Florida Building Code, 7th Edition (2020).
- Develop and present voluntary options for enhanced construction techniques related to the wind provisions of the Florida Building Code.

My hourly rate is $175.00/hr. I anticipate this project to take 115 hours for a total cost of $20,125.00.

Sincerely,

T. Eric Stafford, PE

2038 Club Road • Birmingham, AL 35244
205-987-9034 • 205-985-4375 (fax)
9 STRUCTURE OF THE REPORT

The final report is structured into four main parts; including the Preamble, Introduction and background, followed in order by the individual report sections from the three consultants; ARA, RCQuinn and TESstafford.
Hurricane Wind Speed Simulation for the 63 State of Florida Counties (Applied Research Associates)

THE ANALYSIS FOR THIS SECTION IS CURRENTLY UNDERWAY AND AS SUCH IT IS INCOMPLETE AT THIS TIME.

AN ADDENDUM WILL BE PROVIDED ON 4 DECEMBER 2019
Appendix B. Optional Enhanced Construction Techniques for Flood, and Storm Surge Provisions of the Florida Building Code (RCQuinn)
ENHANCED CODE PROVISIONS FOR FLOOD AND STORM SURGE

Contents
1 Rationale for Enhancing Building Code Requirements for Flood and Storm Surge .. 2
 1.1 Examining Options for Increasing Resiliency ... 2
 1.2 Anticipated Changes to Flooding Impacts that Affect the Design of Buildings .. 4
2 Flood/Storm Surge Requirements in the FBC ... 10
 2.1 History of the Flood Provisions in the FBC ... 10
 2.2 Characteristics of Compliance ... 10
3 Options for Enhanced Code Requirements .. 13
 3.1 Literature Review ... 13
 3.2 Evolving Recommendations for Enhanced Codes .. 14
 3.3 Amending the FBC: Base Code vs. Local Amendments ... 14
 3.4 Options for Enhanced Design and Construction Techniques .. 15
 3.4.1 Regulate Coastal A Zone to Full Zone V Requirements .. 17
 3.4.2 Design Dwelling Foundations for Site-Specific Conditions .. 20
 3.4.3 Build Higher (Freeboard) .. 22
 3.4.4 Limit Enclosures Below Elevated Buildings ... 27
 3.4.5 Limit Use of Fill to Elevate Buildings .. 31
 3.4.6 Design Moveable Buildings in Erosion-Prone and High-Risk Locations ... 32
 3.4.7 Accelerate Compliance of Nonconforming Buildings .. 34
 3.4.8 Foundation Protection Where Groundwater Salinity is Increasing .. 39
 3.4.9 Flood Hazard Areas and Maps .. 40
4 References ... 45
1 RATIONALE FOR ENHANCING BUILDING CODE REQUIREMENTS FOR FLOOD AND STORM SURGE

The Florida Building Commission asked the University of Florida, Engineering School of Sustainable Infrastructure and Environment (ESSIE) to review the identified literature and develop and present “voluntary options for enhanced construction techniques related to wind, flood, and storm surge provisions of the FBC.” This chapter responds to the request related to flood and storm surge.

The FBC includes requirements applicable in mapped flood hazard areas, whether the source of flooding is riverine or coastal, or storm surge. The FBC also includes requirements applicable seaward of the statutorily established Coastal Construction Control Line (CCCL). Effective with the 6th Edition, the CCCL requirements in FBC Section 3109 are, in large part, consistent with the Section 1612 requirements applicable in flood hazard areas.

The FBC specifically governs the design and construction of buildings – the codes govern how to build, not what to build or where to build. Those aspects of development are governed by local zoning and land development codes. In the long term, land use management may offer more effective mechanisms to guide development location and land use in ways that further minimize flood risk associated with future changes in flood characteristics.

1.1 Examining Options for Increasing Resiliency

Many organizations publish descriptions and predictions about climate change and sea level rise in Florida, including various contributing factors, impacts and options. The following brief descriptions are summarized from the publications of the University of Florida Sea Grant Florida; the Sea Level Solutions Center at the Florida International University; and the Office of Resilience and Coastal Protection Programs in the Florida Department of Environmental Protection.
The University of Florida Sea Grant Florida web site summarizes the situation and identifies pertinent reports as follows:

The incidence of flooding in our coastal areas has increased dramatically over the past decades, as cataloged in the report titled “Sea Level Rise and Nuisance Flood Frequency Changes around the United States,” from the National Oceanic and Atmospheric Administration and the report titled “When Rising Seas Hit Home,” from the Union of Concerned Scientists. And the trend of increasing sea-level rise will continue, as indicated by the Unified Sea Level Rise Projection of the Southeast Florida Climate Compact, the Recommended Projection of the Sea Level Rise in the Tampa Bay Region by the Tampa Bay Climate Science Advisory Panel, Global and Regional Sea Level Rise Scenarios for the United States by the National Oceanic and Atmospheric Administration, a short paper by geologist Dr. Hal Wanless called The Coming Reality of Sea Level Rise: Too Fast Too Soon, and many other sources. [http://www.flseagrant.org/climate-change/sea-level-rise/; accessed October 22, 2019]

The Sea Level Solutions Center at the Florida International University, in a 2019 report prepared for the Florida Building Commission, states:

Sea Level Rise (SLR), and any changes to rainfall (both averages and extremes) have the potential to increase the flood elevations in several ways. Increased ocean levels due to sea level rise and storm surge will impact the efficiency of water control structures along the coast, primarily due to low topography in places such as Miami-Dade County. Potential increase in extreme rainfall will not only increase flood levels but also rain loads on buildings. Finally, rising water tables due to sea level rise and porous geology will increase the runoff volumes due to the decrease in storage typically available above the shallow water table.

The Office of Resilience and Coastal Protection Programs in the Florida Department of Environmental Protection is an umbrella for several initiatives, notably the Florida Resilient Coastlines Program to “prepare Florida’s coastal communities and habitats for the effects of climate change, especially rising sea levels.” The Florida Adaptation Planning Guidebook (2018) illustrates a road map taking communities through vulnerability assessment, adaptation planning, and implementation. This approach supports local jurisdictions’ efforts to respond to the requirements of the 2015 “Peril of Flood” Statute (sec. 163.3178(2)(f)1-6, F.S.). The redevelopment component of the coastal management planning element must, among other requirements:

- Identify site development techniques and best practices that may reduce losses due to flooding and claims made under flood insurance policies issued in this state.
• Be consistent with, or **more stringent than**, the flood-resistant construction requirements in the Florida Building Code and applicable flood plain management regulations set forth in 44 C.F.R. part 60. [emphasis added]
• Require that any construction activities seaward of the coastal construction control lines established pursuant to s. 161.053 be consistent with chapter 161.

A growing body of work identifies adaptation approaches to sea level rise, including calls for changes in long-term planning and zoning, transportation and infrastructure adjustments, public awareness and involvement, and measures that would influence where to build (e.g., setbacks, habitat conservation). For example, Sea Grant Florida provides access to several studies online at https://www.flseagrant.org/climate-change/coastalplanning/resources/policy-tools/. In addition, in recent years, some states, communities and nonprofit organizations engaged in adapting to changing conditions, specifically as those conditions affect changes in flooding, are identifying options that influence how to build to increase resiliency. FEMA and others have long promoted a variety of options to increase resiliency of the built environment to flood conditions. Section 3 of this paper briefly describes reasonable and feasible options that could be incorporated in the Florida Building Code, or that could be adopted as local amendments to the FBC.

1.2 Anticipated Changes to Flooding Impacts that Affect the Design of Buildings

Changes in the coastal floodplain may be the most obvious consequence of rising sea levels, but climate changes are predicted to change rainfall patterns, resulting in some areas experiencing more frequent and more intense storms, while other areas may have overall reduction in rainfall. These changes will alter inland riverine floodplains and exacerbate poor drainage from low-lying areas.

Anticipated impacts that affect how buildings are designed include:
Increasing frequency and severity of coastal storms. Tropical storms are expected to be, on average, more intense, and storms with damaging winds and storm surge are expected to occur more frequently.

Increasing frequency and intensity of rainfall events. Freshwater flooding from rainfall affects not only streams and rivers, but low-lying, poorly drained areas. Large parts of Florida have very flat topography, which means rapid or prolonged rainfall accumulates on the ground surface.

Deeper flooding. Because of increasing frequency and intensity of storms, future flooding with the same recurrence interval (1% annual chance) is expected to rise higher than shown on FEMA Flood Insurance Rate Maps (FIRMs).

Larger areas will be affected by flooding. Using the FIRM parameters, the base flood (1% annual chance flood) will inundate larger areas. Whether along streams or shorelines, the inland boundary of Zone A will migrate inland (see Figure 1). Increasing frequency and intensity of rainfall events will increase the size of areas already experiencing poor drainage and ponding.

Higher waves. Wave height is a function of stillwater depth, with wave heights approximately half as high as stillwater depths (see Figure 2). Thus, the deeper the flooding, the higher the waves. Just one additional foot of stillwater depth adds nearly 7 inches of wave height.

Boundary between Zone V and Zone A will move inland. Deeper flooding and higher waves change the physical location where wave heights drop below 3 feet, the point at which FEMA delineates the inland extent of Zone V. For the same reason, the location of the Limit of Moderate Wave Action, where wave heights drop below 1.5 feet, will move inland.

1% Annual Chance Flood, the Base Flood. The “base flood” is used by FEMA to produce FIRMs used by communities to regulate flood hazard areas. FIRMs are “snapshots” in time, reflecting conditions as of the time the studies were done. FIRMs do not show future conditions associated with increasing frequency and severity of coastal and inland storms.

Today’s base flood, and the base flood elevations used to delineate special flood hazard areas, underestimate future flood risk.

FEMA works with a small number of communities that elect to study and depict future conditions on FIRMs, https://www.fema.gov/final-guidelines-using-future-conditions-hydrology

Flood Zone Terminology.

Zone A: Flood zones shown on FIRMs as Zone A, AE, A1–30, AH, AO, A99, and AR are subject to inundation by the base flood.

Zone V: Flood zones shown on FIRMs as Zone V, VE, V1–30, and VO are subject to flooding and high velocity wave action during the base flood.

1% Annual Chance Flood, the Base Flood. The “base flood” is used by FEMA to produce FIRMs used by communities to regulate flood hazard areas. FIRMs are “snapshots” in time, reflecting conditions as of the time the studies were done. FIRMs do not show future conditions associated with increasing frequency and severity of coastal and inland storms.

Today’s base flood, and the base flood elevations used to delineate special flood hazard areas, underestimate future flood risk.

FEMA works with a small number of communities that elect to study and depict future conditions on FIRMs, https://www.fema.gov/final-guidelines-using-future-conditions-hydrology

Flood Zone Terminology.

Zone A: Flood zones shown on FIRMs as Zone A, AE, A1–30, AH, AO, A99, and AR are subject to inundation by the base flood.

Zone V: Flood zones shown on FIRMs as Zone V, VE, V1–30, and VO are subject to flooding and high velocity wave action during the base flood.
Figure 1. Extent of flooding moves inland as sea levels and high tides rise. **MAY REPLACE THIS GRAPHIC (a FEMA graphic shown on page 9)**

Source: Union of Concerned Scientists

Figure 2. BFE determination for coastal flood hazard areas

Source: Coastal Construction Manual (FEMA P-55).
- **Increased scour and erosion.** Although many factors influence scour and erosion, increased frequency and intensity of storms is expected to increase the rate of shoreline changes, lowering beach profiles, threatening hardened shorelines and increasing scour at building foundations.

- **Freshwater runoff may be blocked more frequently and more severely during high-high tides.** Natural and manmade drainage systems collect and channel rainfall runoff downstream, ultimately to tidal water bodies. Stormwater drainage systems convey runoff from streets and paved areas. With rising sea levels and the associated higher high tides, free flows from stormwater outfalls become obstructed as high tide approaches. The obstruction causes rainfall runoff to collect (ponded flooding) and coastal waters spill out into streets and low-lying areas, causing flooding even on days without rain (Figure 3).

Figure 3. How higher sea levels overwhelm local drainage systems. Source: InsideClimate News (March 3, 2016).
• **Depth to groundwater will decrease generally, and depth to saline groundwater will decrease along shorelines.** Using the Urban Miami-Dade groundwater model by USGS, the FIU Sea Level Solutions Center considered future changes in ocean boundary conditions (sea level) and potential changes in future rainfall patterns. In very general terms, wet season average depths to the groundwater table will decrease (groundwater will be closer to the surface) and the spatial location of the freshwater/saltwater interface (zone of dispersion or diffusion) will change (Figure 4 does not show “future” conditions).

![Figure 4. Groundwater flow patterns and the zone of dispersion in an idealized, homogeneous coastal aquifer.](https://water.usgs.gov/ogw/gwrp/saltwater/salt.html)
The lowest horizontal line represents present sea level, while the dashed line immediately above it represents future sea level. The upper two horizontal lines show present and future BFEs extending landward to the present and future inland flood limits. Point B is at the present shoreline, with the segment AB representing the present SFHA. Point D is a possible future position of the shoreline after landward migration caused by submergence and erosion; the segment CD represents the future SFHA for that receding shoreline case. Point E represents the future location of the shoreline if held near its present position at B. In this case, the future SFHA extends from C to E exceeding the receding shoreline case CD. The sketch does not show the future beach profile, which could be stabilized (fixed) by seawalls, levees, beach fill, etc. Note that the sketch is idealized and not to scale, perhaps spanning 10 or 20 feet vertically, but spanning thousands of feet horizontally. Possible changes to the beach profile caused by erosion or stabilization are not shown.

Source: TMAC Future Conditions Risk Assessment and Modeling
2 FLOOD/STORM SURGE REQUIREMENTS IN THE FBC

2.1 History of the Flood Provisions in the FBC

Editions of the FBC that predate the 2010 FBC did not include the flood provisions from the International Codes (I-Codes) because those provisions had been explicitly removed during development by the Florida Building Commission. With funding and technical support from FEMA Headquarters and FEMA Region IV, the Florida Division of Emergency Management asked the Commission to appoint a flood standards workgroup to develop recommendations for integrating the I-Code flood provisions into the FBC. As a result, the 2010 FBC retained the I-Code requirements for buildings in flood hazard areas. Also see a brief history of the flood provisions in the Florida Building Code in Mitigation Assessment Team Report: Hurricane Irma in Florida (FEMA P-2023).

Each edition of the FBC subsequent to 2010 includes flood provisions from the underlying model I-Codes, with some Florida-specific amendments carried forwarded. FEMA deems the flood provisions in the 2018 and 2015 I-Codes to meet or exceed the National Flood Insurance Program (NFIP) minimum requirements for buildings in flood hazard areas. Thus, the flood provisions of the 6th Edition FBC (2017) and the 7th Edition FBC (2020) also meet or exceed the NFIP minimums. Florida communities rely on the FBC together with locally adopted floodplain management regulations to meet the land use regulatory requirements for participation in the NFIP. Many Florida communities adopt local amendments to the flood provisions of the FBC to incorporate more restrictive requirements, pursuant to sec. 553.73(5), F.S.

Appendix A traces the history of the flood provisions in the FBC, from the 2010 FBC through the 7th Edition (2020).

2.2 Characteristics of Compliance

This summary of the defining characteristics of compliance for new buildings and existing buildings in SFHAs does not capture every element in the FBC. The DEM State Floodplain Management Office posts excerpts of the flood provisions of the FBC at https://www.floridadisaster.org/dem/mitigation/floodplain/ (Community Resources).
New Buildings. Defining characteristics of compliant new buildings in SFHAs:

- Lowest floors (a defined term) are be elevated at or above BFE plus 1 foot in Zone A/AE, and the bottom of lowest horizontal structural members of lowest floors are at or above BFE plus 1 foot in Zone V/VE (and Coastal A Zones, if a Limit of Moderate Wave Action is delineated). Higher elevations are required for more important occupancies (Flood Design Class 4, assigned in accordance with ASCE 24).
- Foundations resist flood forces; in Zone V/VE, Coastal A Zones, and floodways, foundations are designed by registered design professionals and designs must be certified.
- Enclosures below elevated buildings are not occupied, are used only for parking, storage and building access, and have flood openings (all zones); walls of enclosures below elevated buildings are breakaway walls in Zone V/VE and Coastal A Zones.
- Flood damage-resistant materials are used below the required elevation.
- Equipment and machinery are elevated to or above the required elevation.
- In Zone A/AE, nonresidential buildings may be designed to be watertight (dry floodproofed) if properly designed for site-specific flood conditions and loads; Florida permits dry floodproofing in Coastal A Zones if wave loads, scour and erosion are accounted for in the design.

Existing Buildings. Compliance requirements for nonconforming existing buildings in SFHAs are triggered by improvements or repairs:

- Nonconforming buildings in flood hazard areas are allowed to remain until proposed improvements or repairs trigger the requirement to bring the buildings into compliance with all of the requirements for new buildings. Local officials determine whether proposed improvements are substantial improvement (a defined term) and whether damaged buildings have incurred substantial damage (a defined term).
- The triggers, sometimes called the “50 percent rule,” are:
 - Substantial improvement, which is when the cost of improvements (alterations, renovations, additions) equals or exceeds 50 percent of the market value of the building before the improvements are made.
 - Substantial damage, which is when the cost to repair a building damaged by any cause (flood, wind, fire, earthquake, neglect, etc.) to its before-damaged condition equals or exceeds 50 percent of the market value of the building before the damage occurred.
• Historic structures may be repaired or improved without strict adherence to new building requirements if the work will allow the structures to retain the historic designation.

Some of the flood provision changes between the 6th Edition and 7th Edition FBC flow from changes to the underlying International Codes, while others add new Florida-specific amendments. The Florida-specific amendments for flood resistant construction adopted in earlier editions are retained (see Appendix A).

• 7th Edition FBC, Florida-specific amendments:
 o FBC, Building – modify ASCE 24 to permit equipment serving pools be below the required elevation provided the equipment is elevated to the extent practical, is anchored to prevent floatation and resist flood loads, and is supplied by branch circuits that have ground-fault circuit interrupter protection.
 o FBC, Building – add a new Section 3115 to specify limits to allow public use restrooms in flood hazard areas below the base flood elevation (same provisions will be in the 2021 IBC).
 o FBC, Residential – modify requirements for equipment to permit equipment serving pools be below the required elevation provided the equipment is elevated to the extent practical, is anchored to prevent floatation and resist flood loads, and is supplied by branch circuits that have ground-fault circuit interrupter protection.

• 7th Edition, FBC, new I-Code amendments [reason statements justifying the residential code changes are included in the noted ICC code change proposals]:
 o Update to the 2014 edition of ASCE 24, Flood Resistant Design and Construction.
 o FBC, Residential – add requirements for concrete slabs in Zone V and Coastal A Zone. [ICC code change RB160-16.]
 o FBC, Residential – add requirements for stairways and ramps in Zone V and Coastal A Zone. [ICC code change RB161-16.]
 o FBC, Residential – add requirements for decks and porches in Zone V and Coastal A Zone. [ICC code change RB162-16.]
3 OPTIONS FOR ENHANCED CODE REQUIREMENTS

3.1 Literature Review

A list of literature with specific options to increase resistance to flood and storm surge flooding was not provided at the beginning of this project. As noted in Section 1.1, more entities have begun to identify adaptation approaches for communities to consider as they grapple with the effects of sea level rise and climate changes. However, only a small number of sources examined include specific measures that can be captured in building code to alter how buildings are designed and constructed to better resist anticipated conditions. The sources and recommendations are summarized in Table 1 and described in more detail in Section 3.4

Table 1. Limited sources reviewed that include recommendations* for design and construction of buildings

<table>
<thead>
<tr>
<th>Sources Reviewed**</th>
<th>Supplement Flood Maps and Flood Hazard Areas</th>
<th>Regulate Coastal A Zones to Full Zone V Requirements</th>
<th>Design Dwellings for Site-Specific Conditions</th>
<th>Build Higher (Freeboard)</th>
<th>Limit Enclosures Below Elevated Buildings</th>
<th>Limit Use of Fill to Elevate Buildings</th>
<th>Design Moveable Buildings in Erosion-Prone and High-Risk Locations</th>
<th>Accelerate Compliance of Nonconforming Buildings (CSI, RFL)</th>
<th>Foundation Protection Where Groundwater Salinity Increasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDEP</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>FIU</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>MATs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>ASFPM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>CCC</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>BOS</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

*Recommendations may not be explicitly phrased as summarized in this table.

**Sources Reviewed:
FDEP = Florida Department of Environmental Protection, Florida Adaptation Guidebook
FIU = Obeysekera, et al., Florida International University, Sea Level Solutions Center
MATs = FEMA Mitigation Assessment Team reports (2004 season; Hurricanes Irma, Michael)
ASFPM = Coastal NAI Handbook
CCC = California Coastal Commission, Sea Level Rise Policy Guidance
BOS = Boston Climate Ready Report: Resilience Initiatives
3.2 Evolving Recommendations for Enhanced Codes

The Florida Building Commission and others evaluating enhanced building code options will undoubtedly discover a changing landscape as more entities begin to turn from how flood risks and flood hazard areas may change over time, to developing concrete options. One such effort was announced on October 11, 2019. The Home Innovation Research Labs of the National Association of Home Builders (NAHB), received a HUD grant to develop residential resilience guidelines for builders and developers. The guidelines will “focus on new construction and major re-construction after natural disasters -- especially re-construction in areas where entire communities need to be rebuilt after significant events.” The Florida Building Commission should monitor this effort and reevaluate recommended enhanced code options based on the recommendations included in the final report.

3.3 Amending the FBC: Base Code vs. Local Amendments

Amendments to the minimum FBC requirements are achieved in one of three ways:

1. Changes to the underlying International Codes that are incorporated through the FBC development process (not described here).

2. Changes to the FBC submitted and approved during the FBC development process (not described here).

3. Changes adopted by local jurisdictions as local administrative or local technical amendments (briefly described here).

Florida Statute, sec. 553.73 paragraph (4) governs adoption of local administrative and technical amendments to the Florida Building Code. Section 553.73 paragraph (5) pertains specifically to administrative or technical amendments to the FBC related to flood resistance. Unlike local amendments adopted pursuant to sec. 553.73(4), sec. 553.73(5)
provides that local amendments for higher standards related to flood resistance are not “rendered void” when the code is updated, provided they meet one of three criteria:

- If the higher standard had already been adopted by local ordinance prior to July 1, 2010;
- If the higher standard is adopted for the purpose of participating in the Community Rating System (CRS); or
- If the higher standard requires freeboard.

The Florida Division of Emergency Management, State Floodplain Management Office, in its role as the NFIP State Coordinating Agency, provides communities instructions for adopting specific local code amendments that make the flood provisions of the FBC more restrictive. DEM also provides code-change language for several of the more common higher standards of interest to Florida communities. The instructions are available here: https://www.floridadisaster.org/dem/mitigation/floodplain/ (Community Resources). For technical support, contact DEM at Flood.Ordinance@em.myflorida.com.

3.4 Options for Enhanced Design and Construction Techniques

Options for enhanced design and construction techniques are described in this section. Using the 7th Edition Florida Building Code (2020) as the base, code-change format is used to show how each option can be incorporated into the FBC. Code-change format uses **underline** for added text and *strike-thru* for deleted text. A notable organization change between the 6th and 7th Florida Building Code Building flows from the underlying International Building Code, in which Section 1612.4 is renumbered Section 1612.2.

Where coordinating changes in local floodplain management regulations are appropriate, code-change format is used to show those changes using the Model Ordinance prepared by the Florida Division of Emergency Management, State Floodplain Management Office (DEM SFMO). The Model Ordinance explicitly relies on the flood

Florida’s CRS Communities. As of April 2019, 242 of Florida’s 467 NFIP participating communities are in the CRS. Many of those communities adopt local amendments to the FBC to increase building resistance to flooding. NFIP policy holders in those communities receive discounts on the cost of premiums ranging from 5 to 35 percent.
provisions of the FBC, which FEMA deems meet or exceed the minimum requirements of the NFIP for buildings and structures.

Since the Florida Building Commission’s decision in 2009 to incorporate flood provisions into the FBC, the DEM SFMO has engaged with nearly all Florida counties, cities and towns to tailor the Model Ordinance to those communities, replacing previously-adopted regulations. As of mid-November 2019, 467 Florida communities participate in the NFIP and 427 communities have adopted local floodplain management regulations based on the Model Ordinance. Most of the remaining communities are in the process of making the transition to FBC-coordinated ordinances. When DEM’s initiative is completed next year, approximately 10 communities are expected to have declined.

DEM’s initiative included a significant focus on preserving locally-adopted higher standards that affect the design of buildings in SFHAs. Those higher standards not only reduce future damage, they qualify many Florida communities for credits under the NFIP Community Rating System. The foundation for preserving local higher standards was laid by a change to the Florida Statutes pertaining to local amendments to the FBC that allows local amendments adopted for specific purposes to survive from edition to edition of the FBC (other local FBC amendments sunset with each new edition).

DEM SFMO posts excerpts of the flood provisions of the 6th Ed. FBC (including a summary of changes), FEMA’s “Highlights of ASCE 24,” and fact sheets prepared by Building A Safer Florida (BASF) about the 6th Edition and the Coastal Construction Control Line. Instructions for amending local regulations and the FBC for selected higher standards are also posted. In the sample code-change language shown in the following subsections, “Whereas clause (see DEM instructions)” refers to the General Instructions that describe satisfying the statutory requirements using whereas clauses in ordinances.
that adopt FBC amendments. Access the materials at https://www.floridadisaster.org/dem/mitigation/floodplain/ (Community Resources).

3.4.1 Regulate Coastal A Zone to Full Zone V Requirements

Coastal high hazard areas are flood-prone areas where breaking waves are expected to exceed 3 feet high during the base flood. On FIRMs, these areas are labeled Zone V (see Figure 5 and Figure 6). Pounding waves are very destructive, which is why the FBC requires buildings in these areas to have open foundations (pilings or columns). Zone A designates flood hazard areas immediately inland of Zone V and inland of shorelines without Zone V. These areas experience some wind-driven waves, but the breaking wave heights are predicted to be less than 3 feet.

During Flood Insurance Study revisions, FEMA evaluates wave conditions and delineates the Limit of Moderate Wave Action (LiMWA) where wave heights are expected to drop below 1.5 feet during base flood conditions (see Figure 6). Although not labeled on FIRMs, the area between the LiMWA and the Zone V boundary (or shoreline if Zone V not present), is known as the Coastal A Zone.
When FIRMs show LiMWAs, the FBC requires buildings to meet the requirements for Zone V, with two exceptions: back-filled stem walls are permitted and a Florida-specific amendment permits nonresidential buildings to have dry floodproofing measures. In both cases, foundation designs must account for wave loads and scour and erosion.

When FEMA delineates LiMWAs on FIRM, some communities elect to modify the FBC and local floodplain management regulations to apply full Zone V requirements in CAZs. This also accounts for future changes when higher waves extend further inland as flood depths increase. Implementing requirements for this purpose requires modifying the FBCB, FBCR, and local floodplain management regulations.

Florida Communities and Coastal A Zone: The DEM State Floodplain Management Office reports that more than 15 communities apply fully Zone V requirements in Coastal A Zones (some locally-designate CAZs).

Whereas clause (see DEM instructions).

modify coastal high hazard area requirements for application in Coastal A Zones

Florida Building Code, Residential.

R322.3.3 Foundations. Buildings and structures erected in coastal high-hazard areas and Coastal A Zones shall be supported on pilings or columns and shall be adequately anchored to such pilings or columns. The space below the elevated building shall be either free of obstruction or, if enclosed with walls, the walls shall meet the requirements of Section R322.3.4. Pilings shall have adequate soil penetrations to resist the combined wave and wind loads (lateral and uplift). Water-loading values used shall be those associated with the design flood. Wind-loading values shall be those required by this code. Pile embedment shall include consideration of decreased resistance capacity caused by scour of soil strata surrounding the piling. Pile systems design and installation shall be certified in accordance with Section R322.3.6. Spread footing, mat, raft or other foundations that support columns shall not be permitted where soil investigations that are required in accordance with Section R401.4 indicate that soil material under the spread footing, mat, raft or other foundation is subject to scour or erosion from wave-velocity flow conditions. If permitted, spread footing, mat, raft or other foundations that support columns shall be designed in accordance with ASCE 24. Slabs, pools, pool decks and walkways shall be located and constructed to be structurally independent of buildings and structures and their foundations to prevent transfer of flood loads to the buildings and structures during conditions of flooding, scour or erosion from wave-velocity flow conditions, unless the buildings and structures and their foundations are designed to resist the additional flood load.

Exception: In Coastal A Zones, stem wall foundations supporting a floor system above and backfilled with soil or gravel to the underside of the floor
system shall be permitted provided the foundations are designed to account for wave action, debris impact, erosion and local scour. Where soils are susceptible to erosion and local scour, stem wall foundations shall have deep footings to account for the loss of soil.

Florida Building Code, Building.

1612.2.1 Modification of ASCE 24. Reserved. Table 6-1 and Section 6.2.1 in ASCE 24 shall be modified as follows:

1. The title of Table 6.1 shall be “Minimum Elevation of Floodproofing, Relative to Base Flood Elevation (BFE) or Design Flood Elevation (DFE), in Coastal A Zones and in Other Flood Hazard Areas that are not High Risk Flood Hazard Areas.”

2. Section 6.2.1 shall be modified to permit dry floodproofing in Coastal A Zones, as follows: “Dry floodproofing of nonresidential structures and nonresidential areas of mixed-use structures shall not be allowed unless such structures are located outside of High Risk Flood Hazard areas and Coastal High Hazard Areas. Dry floodproofing shall be permitted in Coastal A Zones provided wave loads and the potential for erosion and local scour are accounted for in the design. Dry floodproofing of residential structures or residential areas of mixed-use structures shall not be permitted.”

1612.2.2 Modification of ASCE 24 (Coastal A Zone). Section 4.5.13 in ASCE 24 shall be modified as follows:

1. Paragraph 1 shall be modified: “In Coastal High Hazard Areas and Coastal A Zones, stem walls shall not be permitted.”

2. Paragraph 2 shall be deleted.

Floodplain Management Regulations (see DEM instructions).
Everywhere “coastal high hazard areas” appears, insert “and Coastal A Zones”
3.4.2 Design Dwelling Foundations for Site-Specific Conditions

The FBCR, consistent with the NFIP, requires building foundations and designs in coastal high hazard areas (Zone V) to be certified by professional engineers or architects. The FBC also requires certification in Coastal A Zones. This requires consideration of site-specific flood and wave loads and should include consideration of scour and erosion. However, foundations in flood zones identified on FIRMs as Zone A (all zones that start with “A”) other than Coastal A Zones, are not required to be designed.

Some communities require all building foundations in all flood zones to be designed by registered design professionals, including perimeter wall foundations and slab foundations on fill. This ensures designs account for site-specific flood conditions, such as flood depth, velocity, saturation and erosion of filled areas and potential for damaging debris impacts. An alternative that achieves the same objective is to require all dwellings to be designed in accordance with ASCE 24, which is the standard of practice for design of buildings in flood hazard areas. One benefit of relying on ASCE 24 is the more explicit provisions for piling and column foundations (see Figure 7).

3.4.2.1 Require Design of Foundations in Zone A/AE

Whereas clause (see DEM instructions).
require engineered design of dwelling foundations
Florida Building Code, Residential.

R322.2.3 Foundation design and construction. The construction documents shall include documentation that is prepared and sealed by a registered design professional that the design and methods of construction to be used for the foundation are designed to resist flood loads and conditions associated with the design flood. Foundation walls for buildings and structures erected in flood hazard areas shall meet the requirements of Chapter 4.

Exception: Unless designed in accordance with Section R404:
1. The unsupported height of 6-inch (152 mm) plain masonry walls shall be not more than 3 feet (914 mm).
2. The unsupported height of 8-inch (203 mm) plain masonry walls shall be not more than 4 feet (1219 mm).
3. The unsupported height of 8-inch (203 mm) reinforced masonry walls shall be not more than 8 feet (2438 mm).

For the purpose of this exception, unsupported height is the distance from the finished grade of the under-floor space to the top of the wall.

3.4.2.2 Require Design of Dwelling Foundations in Accordance with ASCE 24

Whereas clause (see DEM instructions).

require engineered design of dwelling foundations

Florida Building Code, Residential.

R301.2.4 Floodplain construction. Buildings and structures constructed in whole or in part in flood hazard areas (including A or V Zones) as established in Table R301.2(1), and substantial improvement and repair of substantial damage of buildings and structures in flood hazard areas, shall be designed and constructed in accordance with ASCE 24 Section R322. Buildings and structures that are located in more than one flood hazard area shall comply with the provisions associated with the most restrictive flood hazard area.

Buildings and structures located in whole or in part in identified floodways shall be designed and constructed in accordance with ASCE 24.

R322.1 General. Buildings and structures constructed in whole or in part in flood hazard areas, including A or V Zones and Coastal A Zones, as established in Table R301.2(1), and substantial improvement and repair of substantial damage of buildings and structures in flood hazard areas, shall be designed and constructed in accordance with ASCE 24 the provisions contained in this section. Buildings and structures that are located in more than one flood hazard area shall comply with the provisions associated with the most restrictive flood hazard area.

Buildings and structures located in whole or
in part in identified floodways shall be designed and constructed in accordance with ASCE 24.

Delete remainder of R322

3.4.3 Build Higher (Freeboard)

The term “freeboard” refers to additional height above a minimum level of protection, typically expressed in feet above the BFE. Freeboard provides a margin of safety for uncertainty in analytical methods and to anticipate future conditions.

Floods can and do rise higher than the elevations selected for regulatory purposes. For riverine waterways, continuing development in upstream watersheds will, over time, cause more runoff that may make flooding more severe than depicted on flood hazard maps, especially if the maps are more than a few years old. In addition, many communities have areas outside of mapped SFHAs that flood frequently, but are not regulated for flooding. Approximately 20 percent of NFIP flood insurance claims are paid on buildings located outside of SFHAs. To the extent that flooding is caused by local drainage problems, adopting and enforcing requirements for all buildings outside of SFHAs to be elevated a specified height above grade can reduce flood losses.

Future land use conditions, such as development increasing the amount of impervious surfaces which increases rainfall runoff, are not taken into consideration when FEMA develops FIRMs. Similarly, climate changes that may affect sea-level rise, changes in rainfall patterns, and future flood elevations are not reflected on FIRMs. Adding freeboard in SFHAs and requiring all buildings to be elevated helps protect against possible increases in flooding associated with future conditions.
To reflect the reduced risk associated with higher building elevations, NFIP flood insurance premiums are lower for buildings that are elevated above the BFE. Figure 8 illustrates how lowest floor elevation influences the cost of NFIP flood insurance.

A common argument opposing requirements to elevate buildings higher than required by the NFIP is the additional cost of higher foundations. The incremental cost to add up to 4 feet of additional height varies, depending on foundation type, with elevation on fill more costly than other types of foundations. FEMA estimates each foot of freeboard adds between 0.25 and 1.5 percent to the total cost of construction. Analyses show future avoided damage and lower-cost NFIP flood insurance premiums make it cost-effective to build higher. For most buildings built higher than the BFE, the annual insurance savings is enough to recover added costs within several years. Download the FEMA Fact Sheet Building Higher in Flood Zones: Freeboard – Reduce Your Risk, Reduce Your Premium at www.fema.gov/media-library/assets/documents/96411.

Costs and Benefits of Freeboard:
The National Institute of Building Science released Natural Hazard Mitigation Saves: 2018 Interim Report. This update looked specifically at the savings associated with compliance with the flood, wind and earthquake provisions of 2018 International Codes. One finding is that at least one foot of freeboard saves $6 for every $1 invested.

Figure 8. Estimates of annual NFIP flood insurance premiums as a function of lowest floor elevation relative to the base flood elevation. Source: FEMA (October 2019)
The FBC requirements for elevation and protection of buildings can be modified to require additional height:

1. In mapped special flood hazard areas, to require buildings already required to be elevated or protected to be elevated or protect higher above the BFE than the FBC minimum BFE plus 1 foot.

2. Outside of mapped special flood hazard areas (FIRM Zone X), to reduce exposure of buildings to local drainage problems.

3.4.3.1 Building Higher in Mapped Special Flood Hazard Areas

Implementing additional building elevation (freeboard) that applies in mapped SFHAs requires modification of the FBCB and FBCR. A modification to local floodplain management regulations is necessary to apply the same additional elevation to installation of manufactured homes in certain manufactured homes parks and subdivisions. See DEM instructions and refer to the code-change language below. Where {insert 1 foot plus additional height in feet} appears, insert the selected additional height above the minimum requirement that lowest floors be at or above BFE plus 1 foot.

Coastal communities may want to consider adding another half foot or foot to account for how increases in stillwater depth cause higher waves (described in Section 1.2).

Whereas clause (see DEM instructions).
increase the minimum building elevation requirements.

Florida Communities and Freeboard above the FBC: The DEM State Floodplain Management Office reports that more than 60 Florida communities adopt higher freeboard than the +1 foot required by the FBC, ranging from 1.5 to 4 feet above BFE.

Florida Building Code, Residential.
R322.2.1 Elevation requirements.
1. Buildings and structures in flood hazard areas including flood hazard areas designated as Coastal A Zones, shall have the lowest floors elevated to or above the base flood elevation plus \(\text{insert total additional height in feet} \) \(1 \) foot (305 mm), or the design flood elevation, whichever is higher.

2. In areas of shallow flooding (AO Zones), buildings and structures shall have the lowest floor (including basement) elevated to a height above the highest adjacent grade of not less than the depth number specified in feet (mm) on the FIRM plus \(\text{insert 1 foot plus additional height in feet} \) \(1 \) foot (305 mm), or not less than \(\text{insert 3 feet plus additional height in feet} \) \(3 \) feet (915 mm) if a depth number is not specified.

3. Basement floors that are below grade on all sides shall be elevated to or above base flood elevation plus \(\text{insert total additional height in feet} \) \(1 \) foot (305 mm), or the design flood elevation, whichever is higher.

Exception: Enclosed areas below the design flood elevation, including basements with floors that are not below grade on all sides, shall meet the requirements of Section 322.2.2.

R322.3.2 Elevation requirements.

1. Buildings and structures erected within coastal high-hazard areas and Coastal A Zones, shall be elevated so that the bottom of the lowest horizontal structure members supporting the lowest floor, with the exception of pilings, pile caps, columns, grade beams and bracing, is elevated to or above the base flood elevation plus \(\text{insert total additional height in feet} \) \(1 \) foot (305 mm) or the design flood elevation, whichever is higher.

2. Basement floors that are below grade on all sides are prohibited.

3. The use of fill for structural support is prohibited.

4. Minor grading, and the placement of minor quantities of fill, shall be permitted for landscaping and for drainage purposes under and around buildings and for support of parking slabs, pool decks, patios and walkways.

5. Walls and partitions enclosing areas below the design flood elevation shall meet the requirements of Sections R322.3.4 and R322.3.5.

Florida Building Code, Building.

1612.2 Modification of ASCE 24: Elevation requirements. The minimum elevation requirements shall be as specified in ASCE 24 or the base flood elevation plus \(\text{insert 1 foot plus additional height in feet} \), whichever is higher.

Floodplain Management Regulations.

Elevation requirement for certain existing manufactured home parks and subdivisions. Manufactured homes that are not subject to Section 304.5 of this ordinance, including manufactured homes that are placed, replaced, or substantially improved on sites located in an existing manufactured home park or subdivision, unless on a site where substantial damage as result of flooding has occurred, shall be elevated such that either the:

1. Bottom of the frame of the manufactured home is at or above the elevation required, as applicable to the flood hazard area, in the Florida
Building Code, Residential Section R322.2 (Zone A) or Section R322.3 (Zone V); or

2. Bottom of the frame is supported by reinforced piers or other foundation elements of at least equivalent strength that are not less {insert 36 inches plus additional height in inches} 36 inches in height above grade.

3.4.3.2 Build Higher Outside of Mapped Special Flood Hazard Areas (FIRM Zone X)

The FBC requires the ground adjacent to foundations to be graded to drain surface water away, with a grade that falls a minimum of 6 inches within the first 10 feet away from foundations (FBCB Section 1804.4 and FBCR Section R501.3).

The FBC drainage requirements may not be sufficient to address flooding from inadequate local drainage systems, especially in communities with flat topography where streets, roads, buildings, and other landscape features can obstruct drainage. Flooding of buildings in these areas can be addressed by requiring buildings to be elevated higher above adjacent grade. Some communities relate additional elevation relative to the crown of the nearest street or road or the grade adjacent to foundations.

Implementing a building elevation requirement in areas outside of mapped special flood hazard areas can be done by adding to local land development regulations that govern grading, drainage, or for stormwater management (not shown here). Another way, shown here, is to modify the FBCB and FBCR.

Whereas clause (see DEM instructions).
- increase the minimum building elevation requirements

Florida Communities and Building Elevations in Zone X: The DEM State Floodplain Management Office reports that more than 35 Florida communities adopt specify minimum building elevation in Zone X, typically by specifying height above crown of road, ranging from 0.5 to 1.5 feet.

Florida Building Code, Building.
- CROWN OF ROAD OR STREET. The elevation of the highest surface of road or street pavement within the right-of-way abutting the property or the elevation approved by the city engineer.
- 1804.8 Protection from local drainage. The top surface of floor systems and concrete floors shall be elevated to or above {insert height} above the crown.
of road or street, unless otherwise approved by the {city/county department/engineer}.

Florida Building Code, Residential.

CROWN OF ROAD OR STREET. The elevation of the highest surface of road or street pavement within the right-of-way abutting the property or the elevation approved by the city engineer.

R501.3 Protection from local drainage. The top surface of floor systems and concrete floors shall be elevated to or above {insert height} above the crown of road or street, unless otherwise approved by the {city/county department/engineer}.

3.4.4 Limit Enclosures Below Elevated Buildings

The FBC permits areas below elevated buildings in SFHAs to be enclosed if the areas are used only for parking of vehicles, storage and building access. The FBC, like the NFIP, has no limit to the size of areas that may be enclosed.

Enclosures do not need to be large to serve the allowed uses. The benefits of limiting the size of enclosures include smaller obstructions to the free flow of floodwater, less debris in floodwater, less damage to elevated structures, and owners are less likely to modify smaller enclosures for unpermitted uses. In Zone V, NFIP flood insurance policies are more expensive when buildings have enclosures larger than 299 square feet. Many communities that limit the size of enclosures select a smaller size, such as 295 square feet. Some communities do not apply the size limit to crawlspaces where the foundation wall height is less than a specified number of feet (typically less than 4 or 5).
Some communities elect to apply enclosure limits only to one- and two-family dwellings, in which case the Section 1612 amendment shown below would not be used. Also, some communities elect to apply enclosure limits only to elevated buildings in Zone V/CAZ, in which case the amendment to Section R322.2.2 would not be used (and the amendment to Section 1612 would be modified). Another option in Zone V/CAZ is to allow breakaway walls only surrounding stairways.

Prohibiting solid-wall enclosures is another way to minimize damage to structures (see Figure 9). Even when walls are designed to break away under rising floodwater, damaged to the elevated building has been observed (although sometimes caused by improperly detailed failure joints to allow walls to break away cleanly).

3.4.4.1 Limit Size of Enclosures Below Elevated Buildings

Whereas clause (see DEM instructions).

Limit the size of enclosures below elevated {select one: buildings / dwellings}

Florida Building Code, Residential.

R322.2.2 Enclosed area below design flood elevation. Enclosed areas, including crawl spaces, that are below the design flood elevation shall:
1. Be used solely for parking of vehicles, building access or storage.
2. Be provided with flood openings that meet the following criteria and are installed in accordance with Section R322.2.2.1:
 2.1. The total net area of non-engineered openings shall be not less than 1 square inch (645 mm²) for each square foot (0.093 m²) of enclosed area where the enclosed area is measured on the exterior of the enclosure walls, or the openings shall be designed as engineered openings and the construction documents shall include a statement by a registered design professional that the design of the openings will provide for equalization of hydrostatic flood forces on exterior walls by
allowing for the automatic entry and exit of floodwaters as specified in Section 2.7.2.2 of ASCE 24.

2.2. Openings shall be not less than 3 inches (76 mm) in any direction in the plane of the wall.

2.3 The presence of louvers, blades, screens and faceplates or other covers and devices shall allow the automatic flow of floodwater into and out of the enclosed areas and shall be accounted for in the determination of the net open area.

3. Be not more than (insert number) square feet in area, except for crawlspace foundations that have a wall height less than (insert number) feet.

R322.3.5 Enclosed areas below design flood elevation. Enclosed areas below the design flood elevation shall be not more than (insert number) square feet in area and shall be used solely for parking of vehicles, building access or storage.

Alternative: To allow areas with insect screening or lattice to be larger:

R322.3.6 Enclosed areas below design flood elevation. Enclosed areas below the design flood elevation shall be not more than (insert number) square feet in area unless enclosed solely by insect screening or lattice, and shall be used solely for parking of vehicles, building access or storage.

Florida Building Code, Building.

1612.2.2 Additional requirements for enclosed areas. In addition to the requirements of ASCE 24, enclosed areas below the design flood elevation shall be not more than (insert size limit) square feet in area.

3.4.4.2 Prohibit Solid Wall Enclosures Below Elevated Buildings

Whereas clause (see DEM instructions).

Prohibit solid wall enclosures below elevated (select one: buildings / dwellings)

Florida Building Code, Residential.

R322.2.2 Enclosed area below design flood elevation. Enclosed areas, including crawl spaces, that are below the design flood elevation are not permitted unless enclosed by open lattice or insect screening, shall:

1. Be used solely for parking of vehicles, building access or storage.

2. Be provided with flood openings that meet the following criteria and are installed in accordance with Section R322.2.2.1:

 2.1. The total net area of non-engineered openings shall be not less than 1 square inch (645 mm²) for each square foot (0.093 m²) of enclosed area where the enclosed area is measured on the exterior of the enclosure walls, or the openings shall be designed as engineered openings and the construction documents shall include a statement by a registered design professional that the design of the openings will provide for equalization of hydrostatic flood forces on exterior walls by
allowing for the automatic entry and exit of floodwaters as specified in Section 2.7.2.2 of ASCE 24.

2.2. Openings shall be not less than 3 inches (76 mm) in any direction in the plane of the wall.

2.3. The presence of louvers, blades, screens and faceplates or other covers and devices shall allow the automatic flow of floodwater into and out of the enclosed areas and shall be accounted for in the determination of the net open area.

R322.2.2.1 Installation of openings. The walls of enclosed areas shall have openings installed such that:

1. There shall be not less than two openings on different sides of each enclosed area; if a building has more than one enclosed area below the design flood elevation, each area shall have openings.

2. The bottom of each opening shall be not more than 1 foot (305 mm) above the higher of the final interior grade or floor and the finished exterior grade immediately under each opening.

3. Openings shall be permitted to be installed in doors and windows; doors and windows without installed openings do not meet the requirements of this section.

R322.3.4 Walls below design flood elevation. Walls and partitions are not permitted below the elevated floor unless enclosed by open lattice or insect screening, provided that such walls and partitions are not part of the structural support of the building or structure and:

1. Electrical, mechanical and plumbing system components are not to be mounted on or penetrate through walls that are designed to break away under flood loads; and

2. Are constructed with insect screening or open lattice; or

3. Are designed to break away or collapse without causing collapse, displacement or other structural damage to the elevated portion of the building or supporting foundation system. Such walls, framing and connections shall have a resistance of not less than 10 (479 Pa) and not more than 20 pounds per square foot (958 Pa) as determined using allowable stress design; or

4. Where wind loading values of this code exceed 20 pounds per square foot (958 Pa), as determined using allowable stress design, the construction documents shall include documentation prepared and sealed by a registered design professional that:

 4.1. The walls and partitions below the design flood elevation have been designed to collapse from a water load less than that which would occur during the base flood.

 4.2. The elevated portion of the building and supporting foundation system have been designed to withstand the effects of wind and flood loads acting simultaneously on structural and nonstructural building components. Water-loading values used shall be those associated with the design flood. Wind-loading values shall be those required by this code.

5. Walls intended to break away under flood loads as specified in Item 3 or 4 have flood openings that meet the criteria in Section R322.2.2, Item 2.
R322.3.6 Enclosed areas below design flood elevation. Enclosed areas below the design flood elevation are not permitted unless enclosed by open lattice or insect screening. shall be used solely for parking of vehicles, building access or storage.

R322.3.6.1 Protection of building envelope. An exterior door that meets the requirements of Section R609 shall be installed at the top of stairs that provide access to the building and that are enclosed with walls designed to break away in accordance with Section 322.3.5.

Florida Building Code, Building.

1612.2.2 Enclosure limitations. Enclosures below the design flood elevation are not permitted unless enclosed by open lattice or insect screening.

3.4.5 Limit Use of Fill to Elevate Buildings

Structural fill is a common method of elevating buildings in flood hazard areas not subject to wave action. Sometimes individual buildings are constructed on fill and sometimes multiple lots are filled in order to redelineate the SFHA boundaries. Even in floodway fringe areas, the placement of fill may reduce the ability of floodplains along riverine waterways to store and convey floodwater, sometimes increasing water levels. In areas subject to flooding from coastal sources, the placement of fill can contribute to local drainage problems. Using fill can have adverse impacts on vegetation, trees, wetlands, local drainage, infiltration, and water quality.

To limit the adverse effects of fill, some communities elect to prohibit the use of fill to elevate buildings, with or without included backfilled stem wall foundations. Some communities and provisions in floodplain management regulations to require compensatory storage to offset the effects of fill, especially in riverine floodplains.

Implementing limits on the use of fill to elevate buildings, with or without earthen-filled stem walls requires modification of the FBCB and the FBCR. Some communities that limit use of fill to elevate buildings also limit use of fill for other purposes; that limitation would be accomplished in local regulations, not the FBC.
Whereas clause (see DEM instructions).

Limit the use of structural fill to elevate buildings

Florida Building Code, Residential.

Option 1 (prohibit use of earthen fill pads):

R322.2.3 Foundation design and construction. Use of fill to elevate buildings and foundations shall not be permitted. Foundation walls for all buildings and structures erected in flood hazard areas shall meet the requirements of Chapter 4. *(remainder unchanged)*

Option 2 (prohibit use of earthen fill pads and filled stem wall foundations):

R322.2.3 Foundation design and construction. Use of fill to elevate buildings and foundations, and use of earthen-filled stem walls, shall not be permitted. Foundation walls for all buildings and structures erected in flood hazard areas shall meet the requirements of Chapter 4. *(remainder unchanged)*

Florida Building Code, Building.

Option 1 (prohibit use of earthen fill pads):

1612.2 Modification of ASCE 24: Limitation on use of structural fill. Use of structural fill to elevate buildings and foundations shall not be permitted.

Option 2 (prohibit use of earthen fill pads and stem wall foundations):

1612.2 Modification of ASCE 24: Limitation on use of structural fill. Use of structural fill to elevate buildings and foundations, and use of earthen-filled stem walls, shall not be permitted.

3.4.6 Design Moveable Buildings in Erosion-Prone and High-Risk Locations

Many states and communities establish setbacks and buffers for a variety of reasons, including protecting water quality, providing habitat and wildlife movement corridors, and limiting development within the setback or buffer area. Some communities define setbacks along waterways as proxies where FEMA has not delineated floodways.

The State of Michigan establishes erosion hazard lines along eroding Great Lakes shorelines, especially shorelines with bluffs. Among various requirements that apply to development with specified setback distances landward of erosion hazard lines is a
requirement for readily-moveable structures. As defined in R 281.21(i), Michigan Administrative Rule, a readily-moveable structure must:

- Be designed, sited, and constructed to accomplish relocation at a reasonable cost relative to other structures of the same size and construction type
- Have access to and from the site shall be of sufficient width and acceptable grade to permit the structure to be relocated
- Be on pilings, a basement, or crawl space
- Have above-grade walls that are stud walls

When communities elect to designate high-risk areas expected to be subject to increased future flood risk or erosion-risk, adopting a requirement for new and substantially improved buildings in those areas to be readily moveable would allow reasonable use of property for some period of time, while anticipating future conditions will prompt the need to relocate buildings to less hazard-prone areas. Although not explicit in the Michigan definition of readily-moveable, features that would allow a building to be segmented could be used to facilitate movement, especially in areas with limited access.

Implementing a readily-moveable building requirement requires modification of the FBCB, the FBCR, and local floodplain management or land use regulations.

Whereas clause (see DEM instructions).
require buildings in designated high-risk areas to be readily moveable

Florida Building Code, Residential.
READILY-MOVEABLE BUILDING. A building that is designed, sited, and constructed to allow relocation; is supported on pilings, columns or perimeter wall foundations; has stud wall framing; and has access to and from the site of sufficient width to allow the building to be relocated.

R322.1.11 Readily-moveable buildings in future high-risk areas. Dwellings in future high-risk areas, as defined in local floodplain management ordinances, shall be readily-moveable buildings.

Florida Building Code, Building.
READILY-MOVEABLE BUILDING. A building that is designed, sited, and constructed to allow relocation; is supported on pilings, columns or perimeter
wall foundations; has stud wall framing; and has access to and from the site of sufficient width to allow the building to be relocated.

1612.2.2 Modification of ASCE 24: Readily-moveable buildings in future high-risk areas. In addition to the requirements of ASCE 24, buildings in future high-risk areas, as defined in local floodplain management ordinances, shall be readily-moveable buildings.

Floodplain Management or Land Use Regulations.

Define “future high-risk areas” and adopt maps delineating such areas.

3.4.7 Accelerate Compliance of Nonconforming Buildings

One objective of the flood provisions of the FBC is to reduce the long-term exposure of buildings to flood damage, especially buildings that were constructed before communities adopted regulations for development in SFHAs. To achieve this objective, the FBCB and FBCEB require existing buildings in SFHAs to be brought into compliance with the requirements for new buildings when existing buildings are substantially improved or when they incur substantial damage. The FBCB, FBCEB, and local floodplain management regulations have the same definitions for substantial improvement and substantial damage.

Work on a building is determined to be substantial improvement when the cost of improvements equal or exceed 50 percent of the market value of the building before the improvement is started. A building is determined to have incurred substantial damage when it is damaged by any cause and the cost to repair the building to its pre-damage condition equals or exceeds 50 percent of the market value of the building before the damage occurred. The requirements are sometimes called the “50% rule.”

The minimum requirement for determining when substantial improvement or substantial damage apply is a “one time” evaluation – each time an improvement is proposed or repairs are needed, the calculation comparing costs to market value is made. This inevitably leads some building owners to phase large-scale improvements deliberately to avoid triggering compliance. This means owners invest over time, increasing value, yet the buildings remain at risk of flooding. Similarly, owners of buildings
that experience frequent but relatively low-level flooding invest in repairs, sometimes two or more times in a 10-year period.

The basic substantial improvement and substantial damage requirements can be modified to accelerate increased resistance of nonconforming building:

3. Cumulative substantial improvement

4. Repetitive flood damage

3.4.7.1 Cumulative Substantial Improvement (at least 10 year)

Cumulative substantial improvement involves specifying a period of time over which all costs of improvements and repairs will be accumulated, or added up (costs may be accumulated; some communities accumulate percentages to account for changes in value). Starting with the first application for improvements or repairs, a determination is made as to whether the accumulated costs equal or exceed the market value of the building. Then, when that threshold is reached, the building is required to be brought into compliance with the floodplain management requirements for new construction.

Selection of the period of time depends on the community’s objective. Typically, longer periods (such as 10-years or the life of the structure) are selected with the objective is long-term reduction in the number of nonconforming buildings subject to flooding. Shorter periods (such as 1-year or 5-years) are usually selected to reduce the likelihood that property owners will deliberately phase improvements sequentially for the specific purpose of avoiding the basic 50% substantial improvement rule.

Implementing a cumulative substantial improvement provision requires modification of the definition of “substantial improvement” in the FBCB and the FBCEB. The same modification must be made to the same definition in the local floodplain management regulations. Also, the duties of the Floodplain Administrator related to making SI/SD
determinations should be modified. See DEM instructions and refer to the code-change language below to complete the following:

{number of years} Communities must select the period of time over which they will maintain records to accumulate the cost of improvements and repairs. Insert the selected period of accumulation where {number of years} appears.

{see Note} To alert the public and those who use the regulations about this time-dependent requirement, where this {see Note} appears in the following text, insert the date the cumulative substantial improvement provision is effective.

Whereas clause (see DEM instructions).
require accumulation of costs of improvements and repairs of buildings, based on issued building permits, over a {number of years}–year period,

Florida Building Code, Building.
SUBSTANTIAL IMPROVEMENT. Any combination of repair, reconstruction, rehabilitation, alteration, addition or other improvement of a building or structure taking place during a {number of years}–year period, the cumulative cost of which equals or exceeds 50 percent of the market value of the structure before the improvement or repair is started. The period of accumulation begins when the first improvement or repair of each building or structure is permitted subsequent to {see Note}. If the structure has sustained substantial damage, any repairs are considered substantial improvement regardless of the actual repair work performed. The term does not, however, include either:
1. Any project for improvement of a building required to correct existing health, sanitary or safety code violations identified by the building official and that is the minimum necessary to assure safe living conditions.
2. Any alteration of a historic structure provided that the alteration will not preclude the structure’s continued designation as a historic structure.

Florida Building Code, Existing Building.
SUBSTANTIAL IMPROVEMENT. For the purpose of determining compliance with the flood provisions of this code, any combination of repair, reconstruction, rehabilitation, alteration, addition or improvement of a building or structure taking place during a {number of years}–year period, the cumulative cost of which equals or exceeds 50 percent of the market value of the structure before the improvement or repair is started. The period of accumulation begins when the first improvement or repair of each building or structure is permitted subsequent to {see Note}. If the structure has sustained substantial damage, any repairs are considered substantial improvement regardless of the actual repair work performed. The term does not, however, include either:
1. Any project for improvement of a building required to correct existing
health, sanitary or safety code violations identified by the building official and that is the minimum necessary to assure safe living conditions.

2. Any alteration of a historic structure provided that the alteration will not preclude the structure’s continued designation as a historic structure.

Floodplain Management Regulations.

Modify the section “Substantial improvement and substantial determinations” item (3) Determine and document whether the proposed work constitutes substantial improvement or repair of substantial damage; the determination requires evaluation of previous permits issued for improvements and repairs as specified in the definition of “substantial improvement”; and

3.4.7.2 Repetitive Flood Loss (Substantial Damage)

Many flood hazard areas experience repetitive, relatively low-level flooding. Buildings in these areas are unlikely to sustain the level of damage that qualifies as substantial damage in a single event (cost to repair equals or exceeds 50 percent of market value before damage occurs). The frequency of repetitive flooding is likely to increase in the future.

When communities adopt a definition for substantial damage that includes “repetitive loss,” owners of NFIP-insured structures that sustain repetitive flood damage may be eligible to apply for Increased Cost of Compliance claims even if they do not meet the standard 50 percent threshold for substantial damage by a single event. As of November 2019, this coverage provides up to $30,000 in addition to the payment for the underlying flood damage. To qualify owners for this additional claim amount when repetitive flooding occurs, communities must adopt and enforce the repetitive loss provision on all buildings in SFHAs, not just those that are covered by NFIP flood insurance.

Florida Communities and Repetitive Flood Loss (Substantial Damage): The DEM State Floodplain Management Office reports that more than 50 communities have adopted repetitive flood loss as part of substantial damage.
Implementing a repetitive flood loss provision requires modification of the definition of “substantial damage” in the FBCB and the FBCEB. The same modification must be made to the same definition in the local floodplain management regulations. Also, the duties of the Floodplain Administrator related to making SI/SD determinations should be modified.

Whereas clause (see DEM instructions).
require buildings that sustain repetitive flood damage over a 10-year period to be included in the definition of “substantial damage.”

Florida Building Code, Building.

SUBSTANTIAL DAMAGE. Damage of any origin sustained by a structure whereby the cost of restoring the structure to its before-damaged condition would equal or exceed 50 percent of the market value of the structure before the damage occurred. The term also includes flood-related damage sustained by a structure on two separate occasions during a 10-year period for which the cost of repairs at the time of each such flood event, on average, equals or exceeds 25 percent of the market value of the structure before the damage occurred.

Florida Building Code, Existing Building.

SUBSTANTIAL DAMAGE. For the purpose of determining compliance with the flood provisions of this code, damage of any origin sustained by a structure whereby the cost of restoring the structure to its before-damaged condition would equal or exceed 50 percent of the market value of the structure before the damage occurred. The term also includes flood-related damage sustained by a structure on two separate occasions during a 10-year period for which the cost of repairs at the time of each such flood event, on average, equals or exceeds 25 percent of the market value of the structure before the damage occurred.

Floodplain Management Regulations.

Modify the section “Substantial improvement and substantial determinations” item (3) Determine and document whether the proposed work constitutes substantial improvement or repair of substantial damage; the determination requires evaluation of previous permits issued for improvements and repairs as specified in the definition of “substantial improvement”.

Modify the definition “Substantial Damage” to match.
3.4.8 Foundation Protection Where Groundwater Salinity is Increasing

The FIU Sea Level Solutions Center report “Potential Implications of Sea-Level Rise and Changing Rainfall for Communities in Florida using Miami-Dade County as a Case Study” (Obeysekera, et al. 2019) described likely changes to groundwater as rainfall patterns change and sea level rises. In general, depths to the groundwater table will decrease and the average location of the fresh/saltwater interface (zone of dispersion or diffusion) will move inland. The report recommended the “V-zone and coastal A-zones be used as a proxy to delimit the below grade areas where code could regulate the use of saltwater corrosion-resistant materials associated with foundations.”

Given the expectation that changes to groundwater caused by sea level rise driving saltwater intrusion further inland will be gradual, will vary seasonally, and will vary from location to location, it is reasonable to consider a proxy. However, whether there is sufficient correlation between flood zone boundaries that reflect what is predicted to happen at the surface based on wave heights during base flood conditions (1 percent annual chance of occurring in any given year) and the location of fresh/saltwater interface should be further examined.

The Florida Building Code requires use of flood damage-resistant materials for buildings in flood hazard areas (FBCR R322.1.8 and FBCB Section 1612 by reference to ASCE 24). FEMA Technical Bulletin 2, Flood Damage-Resistant Materials Requirements, and FEMA Technical Bulletin 8, Corrosion Protection of Metal Connectors in Coastal Areas, are the best available guidance. For the most part, the guidance describes use of resistant materials exposed to aerosol salts and saline floodwaters. However, a plain reading does not preclude application of the requirement that materials used below-grade should also be flood damage-resistant materials.

Where below-grade building elements are exposed to groundwater, especially at the free groundwater surface that fluctuates and materials are exposed to both air and water, the materials used should already be materials that resist deterioration due to that exposure. This should occur regardless of whether a building site is also subject to flooding.
Laying aside how to determine where to apply a more explicit requirement for below-
grade foundation elements to be designed and constructed with materials and methods
resistant to exposure to saline groundwater, adding explicit requirements based on the
presence – or anticipated presence – of saline groundwater should be straightforward.
However, the research for this paper did not investigate whether any existing materials
standards, such as those published by the American Concrete Institute or the American
Society for Testing and Materials. Code changes would likely be appropriate in FBCR
Chapter 4 (several locations) and several chapters in FBCB, including chapters 18, 19,
21, 22 and 23. Suggested language for those changes is not included in this section.

Without evidence of foundation failures caused by the effects of exposure to saline
groundwater, it is unclear whether requirement for methods and materials resistant to
exposure to saline groundwater would be cost-effective given deterioration of exposed
materials likely occurs over long periods of times.

3.4.9 Flood Hazard Areas and Maps

Florida communities adopt FISs and FIRMs produced by FEMA in local floodplain
management regulations. These studies and maps are the basis for enforcing the flood
provisions of the FBC and local floodplain management regulations. Although modifying
the areas regulated or adopting supplemental flood hazard maps would be accomplished
by local regulation rather than FBC amendment, these options are described here
because this approach may be the most effective way to account for changes in future
flooding conditions.

The NFIP recognizes that some communities may adopt other flood maps or studies
that cover all or just some areas within their jurisdiction. Use of other maps and supporting
studies is allowed, provided the maps show either flood-prone areas that are larger than
the SFHA or flood-prone areas that are not identified on FIRMs.
The FBC and ASCE 24 define and use the terms “design flood,” “design flood elevation” and “flood hazard area” to refer to SFHAs shown on FIRMs as well as flood elevations and flood hazard areas delineated on supplemental flood hazard area maps that communities may elect to adopt.

Communities may adopt different or additional flood hazard maps for several reasons:

- To delineate on supplemental maps those areas that experience flooding but are not shown on FIRMs as SFHAs
- To delineate historic floods of record that affected areas outside the limits of the FEMA-defined SFHA
- To delineate areas anticipated to be subject to future flooding because of changing conditions, such as climate change or upper watershed development estimated based on zoning

3.4.9.1 Adopt Supplemental Flood Hazard Maps

When communities delineate areas subject to regulations on maps, the maps should be adopted for regulatory purposes. Communities determine what is shown on those maps, which may be future condition riverine flooding based on anticipated upland build-out and increasing rainfall intensity, or may be an areal delineation of land expected to be subject to tidal flooding based on sea level rise planning and increasing frequency and intensity of storm surges.

The basic language to adopt the FIS and FIRMs used by Florida communities can be modified to identify and adopt supplemental flood hazard maps. The actual phrasing used to refer to supplemental maps will depend on how those documents are titled.
3.4.9.2 Expand Area Subject to Floodplain Management Requirements (Horizontal)

If supplemental maps based on studies are not prepared, another option to expand the area subject to floodplain management requirements is by establishing a horizontal distance inland from the SFHA boundary and applying the regulations within the designated area. The basic language to adopt the FIS and FIRMs used by Florida communities can be modified to identify the horizontal distance inland from the SFHA boundary. Establishing the requirements that apply within the expanded area, such as lowest floor elevation, would be accomplished as an FBC amendments.

If the expanded area is shown on a supplemental map, the phrasing in Section 3.4.9.1 should be used. Communities considering this approach should keep in mind that a fixed distance inland would not take changes in topography into consideration. Phrasing similar to that shown in Section 3.4.9.3 should be used to regulate additional area below specific elevations. Another option to expand in the horizontal would be to specify the regulations apply to the 0.2 percent (500-year) flood hazard area.

Floodplain Management or Land Use Regulations.

Basis for establishing flood hazard areas. The Flood Insurance Study for {County}, Florida and Incorporated Areas dated {FIS date}, and all subsequent amendments and revisions, and the accompanying Flood Insurance Rate Maps (FIRM), and all subsequent amendments and revisions to such maps, are adopted by reference as a part of this ordinance and shall serve as the minimum basis for establishing flood hazard areas. Studies and maps that establish flood hazard areas are on file at the {address}.

Floodplain Management or Land Use Regulations.

Basis for establishing flood hazard areas. The Flood Insurance Study for {County}, Florida and Incorporated Areas dated {FIS date}, and all subsequent amendments and revisions, and the accompanying Flood Insurance Rate Maps (FIRM), and all subsequent amendments and revisions to such maps, are adopted by reference as a part of this ordinance and shall serve as the minimum basis for establishing flood hazard areas. Studies and maps that establish flood hazard areas are on file at the {address}.

Floodplain Management or Land Use Regulations.

Basis for establishing flood hazard areas. The Flood Insurance Study for {County}, Florida and Incorporated Areas dated {FIS date}, and all subsequent amendments and revisions, and the accompanying Flood Insurance Rate Maps (FIRM), and all subsequent amendments and revisions to such maps, are adopted by reference as a part of this ordinance and shall serve as the minimum basis for establishing flood hazard areas. Studies and maps that establish flood hazard areas are on file at the {address}.

Enhanced Code (Flood) – final draft 11/25/19
3.4.9.3 Expand Area Subject to Floodplain Management Requirements (Vertical)

One of the reasons communities adopt requirements for buildings to be elevated higher than the minimum specified by the NFIP or the FBC (freeboard) is to account for future conditions (see Section 3.4.3). But if FIRMs are used as the basis for establishing flood hazard areas, then the land area under the freeboard elevation is not regulated.

Consider a community adopts 2 feet of freeboard and look at the scenario illustrated in Figure 10. Building B is just “outside” of the SFHA and is allowed to be constructed at grade (perhaps with a basement). Building A is “in” the SFHA and must be elevated 2 feet above the BFE. Now, suppose future flooding rises a foot and a half or 2 feet above the BFE. Building B is not damaged, while Building A is inundated. Regulating land below the freeboard height applies the same factor of safety to all buildings subject to flooding up to that height, providing an equal level of protection to those who develop in areas just outside the FEMA-designated floodplain.

Figure 10. Expanding the area subject to floodplain management regulations (vertical).

| Floodplain Management or Land Use Regulations. |
| Basis for establishing flood hazard areas. | The Flood Insurance Study for {County}, Florida and Incorporated Areas dated {FIS date}, and all subsequent amendments and revisions, and the accompanying Flood Insurance Rate Maps (FIRM), and all subsequent amendments and revisions to such maps, are adopted by reference as a part of this ordinance. The Flood Insurance Study and FIRMs, and the land area below {insert vertical height} above the closest applicable base flood elevation, and shall serve as the minimum basis for establishing flood hazard areas. Studies and maps that establish flood hazard areas are on file at the {address}. |
4 REFERENCES

(Stafford)

The provisions of this supplement provide enhanced construction techniques for strengthening the wind, water intrusion, flood, and storm surge provisions of the Florida Building Code. The recommendations are shown legislatively to the 6th Edition (2017) Florida Building Code, Building (new text shown underlined and deleted text shown stricken-through) so local jurisdictions can easily see the recommended changes and adopt the provisions accordingly.

CHAPTER 1
SCOPE AND ADMINISTRATION

Revise the following sections to read as follows:

110.3 Required inspections. The building official upon notification from the permit holder or his or her agent shall make the following inspections, and shall either release that portion of the construction or shall notify the permit holder or his or her agent of any violations which must be corrected in order to comply with the technical codes. The building official shall determine the timing and sequencing of when inspections occur and what elements are inspected at each inspection.

Building

1. Foundation inspection. To be made after trenches are excavated and forms erected and shall at a minimum include the following building components:

- Stem-wall
- Monolithic slab-on-grade
- Piling/pile caps
- Footers/grade beams

1.1. In flood hazard areas, upon placement of the lowest floor, including basement, and prior to further vertical construction, the elevation certification shall be submitted to the authority having jurisdiction.

2. Framing inspection. To be made after the roof, all framing, fireblocking and bracing is in place, all concealing wiring, all pipes, chimneys, ducts and vents are complete and shall at a minimum include the following building components:

- Window/door framing
- Vertical cells/columns
- Lintel/tie beams
- Framing/trusses/bracing/connectors
- Draft stopping/fire blocking
- Curtain wall framing
- Energy insulation
3. Sheathing inspection. To be made either as part of a dry-in inspection or done separately at the request of the contractor after all roof and wall sheathing and fasteners are complete and shall at a minimum include the following building components:

- Roof sheathing
- Wall sheathing
- Sheathing fasteners
- Roof/wall dry-in

4. Exterior wall coverings. Shall at a minimum include the following building components in progress inspections:

- Exterior wall coverings and veneers
- Soffit coverings

5. Roofing inspection. Shall at a minimum include the following building components:

- Dry-in
- Insulation
- Roof coverings
- Flashing

6. Final inspection. To be made after the building is completed and ready for occupancy.

CHAPTER 2
DEFINITIONS
Revise the following sections to read as follows:

WIND-BORNE DEBRIS REGION. Areas within hurricane-prone regions located:

1. Within 1 mile (1.61 km) of the coastal mean high water line where the ultimate design wind speed, V_{ult}, is 130 mph (58 m/s) or greater; or

2. In areas where the ultimate design wind speed, V_{ult}, is 140 mph (63.6 m/s) or greater.

For Risk Category II buildings and other structures and Risk Category III buildings and other structures, except health care facilities, the wind-borne debris region shall be based on Figure 1609.3(1). For Risk Category IV buildings and structures and Risk Category III health care facilities, the windborne debris region shall be based on Figure 1609.3(2). For Risk Category IV buildings and other structures, the wind-borne debris region shall be based on Figure 1609.3(3).

CHAPTER 14
EXTERIOR WALLS
Revise the following sections to read as follows:
1403.2 Weather protection. Exterior walls shall provide the building with a weather-resistant exterior wall envelope. The exterior wall envelope shall include flashing, as described in Section 1405.4. The exterior wall envelope shall be designed and constructed in such a manner as to prevent the accumulation of water within the wall assembly by providing a water resistive barrier behind the exterior veneer, as described in Section 1404.2, and a means for draining water that enters the assembly to the exterior. Protection against condensation in the exterior wall assembly shall be provided in accordance with Section 1405.3.

Exceptions:
1. A weather-resistant exterior wall envelope shall not be required over concrete or masonry walls designed in accordance with Chapters 19 and 21, respectively.

1403.9 Drained wall assembly over mass wall assembly. Where wood frame or other types of drained wall assemblies are constructed above mass wall assemblies, flashing or other approved drainage system shall be installed as required by Section 1405.4.

1403.10 Soffits. Soffits shall comply with Section 1709.10.

1404.2 Water-resistive barrier. Not fewer than one layer of No.15 asphalt felt, complying with ASTM D226 for Type 1 felt or other approved materials, shall be attached to the studs or sheathing, with flashing as described in Section 1405.4, in such a manner as to provide a continuous water-resistive barrier behind the exterior wall veneer.

1404.2.1 Where cement plaster (stucco) is to be applied to lath over frame construction, the water-resistive barrier shall comply with Section 2510.6.

1405.6 Anchored masonry veneer. Anchored masonry veneer shall comply with the provisions of Sections 1405.6, 1405.7, 1405.8 and 1405.9 and Sections 12.1 and 12.2 of TMS 402/ACI 530/ASCE 5.

1405.6.1 Tolerances. Anchored masonry veneers in accordance with Chapter 14 are not required to meet the tolerances in Article 3.3 F1 of TMS 602/ACI 530.1/ASCE 6.

1405.6.2 Tie attachment for wood frame backing. The minimum tie fastener for wood frame back shall be an RSRS-03 (2½” x 0.131 ring shank nail) complying with ASTM F1667. The maximum vertical spacing of ties shall be 11 inches and the maximum horizontal spacing of ties shall be 16 inches. Seismic requirements. Anchored masonry veneer located in Seismic Design Category C, D, E or F shall conform to the requirements of Section 12.2.2.10 of TMS 402/ACI 530/ASCE 5.

1405.14 Vinyl siding. Vinyl siding conforming to the requirements of this section and complying with ASTM D3679 shall be permitted on exterior walls of buildings located in areas where V_{asd} as determined in accordance with Section 1609.3.1 does not exceed 100 miles per hour (45 m/s) and the building height is less than or equal to 40 feet (12 192 mm) in Exposure C. Where construction is located in areas where V_{asd} as determined in accordance with Section 1609.3.1 exceeds 100 miles per hour (45 m/s), or building heights are in excess of 40 feet (12 192 mm), tests or calculations indicating compliance with
Chapter 16 shall be submitted. Vinyl siding shall be secured to the building so as to provide weather protection for the exterior walls of the building. Vinyl siding shall be certified and labeled as conforming to the requirements of ASTM D3679 by an approved quality control agency. Vinyl siding shall have an approved design wind pressure rating based on ASTM D3679 Annex 1 that meets or exceeds the design wind pressures determined in accordance with Section 1609 multiplied by 2.22. Vinyl siding shall be installed over wood structural panel sheathing.

1405.16 Fiber-cement siding. Fiber-cement siding complying with Section 1404.10 shall be permitted on exterior walls of Type I, II, III, IV and V construction and the attachment shall meet the design wind pressures specified in Section 1609 as specified for wind pressure resistance or wind speed exposures as indicated by the manufacturer’s listing and label and approved installation instructions. Where specified, the siding shall be installed over sheathing or materials listed in Section 2304.6 and shall be installed to conform to the water-resistive barrier requirements in Section 1403. Siding and accessories shall be installed in accordance with approved manufacturer’s instructions. Unless otherwise specified in the approved manufacturer’s instructions, nails used to fasten the siding to wood studs shall be corrosion-resistant round head smooth shank and shall be long enough to penetrate the studs at least 1 inch (25 mm). For cold-formed steel light-frame construction, corrosion-resistant fasteners shall be used. Screw fasteners shall penetrate the cold-formed steel framing at least three exposed full threads. Other fasteners shall be installed in accordance with the approved construction documents and manufacturer’s instructions.

1405.16.2 Lap siding. Fiber-cement lap siding having a maximum width of 12 inches (305 mm) shall comply with the requirements of ASTM C1186, Type A, minimum Grade II (or ISO 8336, Category A, minimum Class 2). Lap siding shall be lapped a minimum of 1 ¼ inches (32 mm) and lap siding not having tongue-and-groove end joints shall have the ends protected with caulking, covered with an H-section joint cover, located over a strip of flashing or shall be otherwise designed to comply with Section 1403.2. Lap siding courses shall be installed with the fastener heads exposed (face-nailed) or concealed in accordance with the approved manufacturer’s instructions.

1405.17 Fastening. Weather boarding and wall coverings shall be securely fastened with aluminum, copper, zinc, zinc-coated or other approved corrosion-resistant fasteners to meet the design wind pressures specified in Section 1609 in accordance with the nailing schedule in Table 2304.10.1, the HVHZ shall comply with Table 2324.1 or the approved manufacturer’s instructions. Shingles and other weather coverings shall be attached with appropriate standard-shingle nails to furring strips securely nailed to studs, or with approved mechanically bonding nails, except where sheathing is of wood not less than 1-inch (25 mm) nominal thickness or of wood structural panels as specified in Table 2308.9.3(3) (the HVHZ shall comply with Section 2322).

CHAPTER 15
ROOF ASSEMBLIES AND ROOFTOP STRUCTURES
Revise the following sections to read as follows:

1503.4.3 Gutters. Gutters and leaders placed on the outside of buildings, other than Group R-3, private garages and buildings of Type V construction, shall be of noncombustible material or a minimum of Schedule 40 plastic pipe.
1503.4.3.1 Wind resistance of gutters. Gutters shall be designed, constructed and installed to resist wind loads in accordance with 1609 and shall be tested in accordance with Test Methods G-1 and G-2 of ANSI/SPRI GT-1.

1504.3.1 Other roof systems. Built-up, modified bitumen, fully adhered or mechanically attached single-ply roof systems, metal panel roof systems applied to a solid or closely fitted deck and other types of membrane roof coverings shall be tested in accordance with FM 4474, UL 580 or UL 1897.

1504.3.2 Metal panel roof systems. Metal panel roof system through fastened or standing seam shall be tested in accordance with UL 580 or ASTM E1592 or TAS 125.

Exceptions: Metal roofs constructed of cold-formed steel, where the roof deck acts as the roof covering and provides both weather protection and support for structural loads, shall be permitted to be designed and tested in accordance with the applicable referenced structural design standard in Section 2210.1.

1504.5 Edge securement for low-slope roofs. Low-slope built-up, modified bitumen and single-ply roof system metal edge securement, except gutters, shall be designed and installed for wind loads in accordance with Chapter 16 and tested for resistance in accordance with Test Methods RE-1, RE-2 and RE-3 of ANSI/SPRI ES-1, or RAS 111 except V_{in} wind speed shall be determined from Figure 1609.3(1), 1609.3(2), or 1609.3(3), or 1609.3(4) as applicable.

1504.10 Ridge vents of metal, plastic or composition material. All ridge and off-ridge vents shall be installed in accordance with the manufacturer’s installation instructions and be capable of resisting the wind loads specified in Chapter 16. Ridge and off-ridge vents shall also be tested in accordance with TAS 100(A) for wind driven water infiltration. All ridge and off-ridge vents shall be limited by the roof mean height as tested in accordance with TAS 100(A), and shall be listed in the system manufacturer’s product approval.

1507.1.1 Underlayment. Unless otherwise noted, Underlayment for asphalt shingles, metal roof shingles, mineral surfaced roll roofing, slate and slate-type shingles, wood shingles, wood shakes and metal roof panels for roof slopes 2:12 and greater shall conform to the applicable standards listed in this chapter. Underlayment materials required to comply with ASTM D226, D1970, D4869 and D6757 shall bear a label indicating compliance to the standard designation and, if applicable, type classification indicated in Table 1507.1.1. Underlayment for roof slopes 2:12 and greater shall be applied and attached in accordance with Section 1507.1.1.1, 1507.1.1.2, or 1507.1.1.3 as applicable Table 1507.1.1.

Exception: For areas of a roof that cover exterior walkways and roofs of agricultural buildings, underlayment shall comply with the manufacturer’s installation instructions.

1507.1.1.1 Underlayment for asphalt, metal, mineral surfaced, slate and slate-type roof coverings. Underlayment for asphalt shingles, metal roof shingles, mineral surfaced roll roofing, slate and slate-type shingles, and metal roof panels shall comply with one of the following methods:

1. The entire roof deck shall be covered with an approved self-adhering polymer modified bitumen underlayment complying with ASTM D1970 installed in accordance with both the
underlayment manufacturer’s and roof covering manufacturer’s installation instructions for the deck material, roof ventilation configuration and climate exposure for the roof covering to be installed.

2. A minimum 4-inch-wide (102 mm) strip of self-adhering polymer-modified bitumen membrane complying with ASTM D1970, installed in accordance with the manufacturer’s instructions for the deck material, shall be applied over all joints in the roof decking. An approved underlayment in accordance with Table 1507.1.1.1 for the applicable roof covering shall be applied over the entire roof over the 4-inch-wide (102 mm) membrane strips.

 Exception: A reinforced synthetic underlayment that is approved as an alternate to underlayment complying with ASTM D226 Type II and having a minimum tear strength of 15 lbf in accordance with ASTM D1970 or ASTM D4533 of 20 pounds and a minimum tensile strength of 20 lbf/inch in accordance with ASTM D5035 shall be permitted to be applied over the entire roof over the 4-inch-wide (102 mm) membrane strips. This underlayment shall be installed and attached in accordance with the underlayment attachment methods of Table 1507.1.1.1 for the applicable roof covering and slope and the underlayment manufacturer’s installation instructions, except metal cap nails shall be required where the ultimate design wind speed, V_{ult}, equals or exceeds 150 mph.

3. A minimum 3 ¾-inch wide (96 mm) strip of self-adhering flexible flashing tape complying with AAMA 711-13, Level 3 (for exposure up to 176° F (80° C)), installed in accordance with the manufacturer’s instructions for the deck material, shall be applied over all joints in the roof decking. An approved underlayment in accordance with Table 1507.1.1.1 for the applicable roof covering shall be applied over the entire roof over the 4-inch-wide (102 mm) flashing strips.

 Exception: A reinforced synthetic underlayment that is approved as an alternate to underlayment complying with ASTM D226 Type II and having a minimum tear strength of 15 lbf in accordance with ASTM D4533 and a minimum tensile strength of 20 lbf/inch in accordance with ASTM D5035 shall be permitted to be applied over the entire roof over the 4-inch-wide (102 mm) membrane strips. This underlayment shall be installed and attached in accordance with the underlayment attachment methods of Table 1507.1.1.1 for the applicable roof covering and slope and the underlayment manufacturer’s installation instructions.

4. Two layers of ASTM D226 Type II or ASTM D4869 Type III or Type IV underlayment shall be installed as follows: Apply a 19-inch (483 mm) strip of underlayment felt parallel to and starting at the eaves, fastened sufficiently to hold in place. Starting at the eave, apply 36-inch-wide (914 mm) sheets of underlayment, overlapping successive sheets 19 inches (483 mm), end laps shall be 6 inches and shall be offset by 6 feet. The underlayment shall be attached to a nailable deck with corrosion-resistant fasteners with one row centered in the field of the sheet with a maximum fastener spacing of 12 inches (305 mm) o.c., and one row at the end and side laps fastened 6 inches (152 mm) o.c. Underlayment shall be attached using annular ring or deformed shank nails with metal or plastic caps with a nominal cap diameter of not less than 1 inch. Metal caps are required where the ultimate design wind speed, V_{ult}, equals or exceeds 170 mph. Metal caps shall have a thickness of not less than 32-gage sheet metal. Power-driven metal caps shall have a minimum thickness of 0.010 inch. Minimum thickness of the outside edge of plastic caps shall be 0.035 inch. The cap nail shank
shall be not less than 0.083 inch for ring shank cap nails. Cap nail shank shall have a length sufficient to penetrate through the roof sheathing or not less than 3/4 inch into the roof sheathing.

5. Two layers of a reinforced synthetic underlayment that has a Product Approval as an alternate to underlayment complying with ASTM D226 Type II shall be permitted to be used. Synthetic underlayment shall have a minimum tear strength of 15 lbf in accordance with ASTM D4533, a minimum tensile strength of 20 lbf/inch in accordance with ASTM D5035, and shall meet the liquid water transmission test of Section 8.6 of ASTM D4869. Synthetic underlayment shall be installed as follows: Apply a strip of synthetic underlayment that is half the width of a full sheet parallel to and starting at the eaves, fastened sufficiently to hold in place. Starting at the eave, apply full sheets of reinforced synthetic underlayment, overlapping successive sheets half the width of a full sheet plus the width of the manufacturers single ply overlap. End laps shall be 6 inches and shall be offset by 6 feet. Synthetic underlayment shall be attached to a nailable deck with corrosion-resistant fasteners with a maximum fastener spacing measured horizontally and vertically of 12 inches (305 mm) o.c. between side laps, and one row at the end and side laps fastened 6 inches (152 mm) o.c. Synthetic underlayment shall be attached using annular ring or deformed shank nails with metal or plastic caps with a nominal cap diameter of not less than 1 inch. Metal caps are required where the ultimate design wind speed, V_{ult}, equals or exceeds 170 mph. Metal caps shall have a thickness of not less than 32-gage sheet metal. Power-driven metal caps shall have a minimum thickness of 0.010 inch. Minimum thickness of the outside edge of plastic caps shall be 0.035 inch. The cap nail shank shall be not less than 0.083 inch for ring shank cap nails. Cap nail shank shall have a length sufficient to penetrate through the roof sheathing or not less than 3/4 inch into the roof sheathing.

Exception: Compliance with Section 1507.1.1.1 is not required for structural metal panels that do not require a substrate or underlayment.

TABLE 1507.1.1.
UNDERLAYERMENT WITH SELF-ADHERING STRIPS OVER ROOF DECKING JOINTS

<table>
<thead>
<tr>
<th>Roof Covering</th>
<th>Underlayment Type</th>
<th>2:12 ≤ Roof Slope < 4:12</th>
<th>Roof Slope ≥ 4:12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Shingles, Metal Roof Panels, Photovoltaic Shingles</td>
<td>ASTM D226 Type II or IV, ASTM D4869 Type III</td>
<td>Apply in accordance with Section 1507.1.1.1 Item 4 or Section 1507.1.1.3 Item 3 as applicable to the type of roof covering.</td>
<td>Underlayment shall be applied shingle fashion, parallel to and starting from the eave and lapped 4 inches (51 mm), end laps shall be 6 inches and shall be offset by 6 feet. The underlayment shall be attached to a nailable deck with two staggered rows in the field of the sheet with a maximum fastener spacing of 12 inches (305 mm) o.c., and one row at the end and side laps fastened 6 inches (152 mm) o.c. Underlayment shall be attached using annular ring or deformed shank nails with metal or plastic caps with a nominal cap diameter of not less than 1 inch. Metal caps are required where the ultimate design wind speed, V_{ult}, equals or exceeds 170 mph. Metal caps shall have a thickness of not less than 32-gage sheet metal. Power-driven metal caps shall have a minimum thickness of 0.010 inch. Minimum thickness of the outside edge of plastic caps shall be 0.035 inch. The cap nail shank shall be not less than 0.083 inch for ring shank cap nails. Cap nail shank shall have a length sufficient to penetrate through the roof sheathing or not less than 3/4 inch into the roof sheathing.</td>
</tr>
<tr>
<td>Metal Roof Shingles, Mineral-Surface Roll Roofing, Slate and Slate-type Shingles</td>
<td>ASTM D226 Type II or IV, ASTM D4869 Type III</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1507.1.1.2 Underlayment for concrete and clay tile. Underlayment for concrete and clay tile shall comply with one of the following methods:

1. The entire roof deck shall be covered with an approved self-adhering polymer modified bitumen underlayment complying with ASTM D1970 installed in accordance with both the underlayment manufacturer's and roof covering manufacturer's installation instructions for the deck material, roof ventilation configuration and climate exposure for the roof covering to be installed.

2. A minimum 4-inch-wide (102 mm) strip of self-adhering polymer-modified bitumen membrane complying with ASTM D1970, installed in accordance with the manufacturer's instructions for the deck material, shall be applied over all joints in the roof decking. An underlayment complying with Section 1507.3.3 shall be applied over the entire roof over the 4-inch-wide (102 mm) membrane strips.

3. A minimum 3 ¾-inch wide (96 mm) strip of self-adhering flexible flashing tape complying with AAMA 711-13, Level 3 (for exposure up to 176° F (80° C), installed in accordance with the manufacturer’s instructions for the deck material, shall be applied over all joints in the roof decking. An underlayment complying with Section 1507.3.3 shall be applied over the entire roof over the 4-inch-wide (102 mm) flashing strips.

4. Two layers of ASTM D226 Type II or ASTM D4869 Type III or Type IV underlayment shall be installed as follows: Apply a 19-inch (483 mm) strip of underlayment felt parallel to and starting at the eaves, fastened sufficiently to hold in place. Starting at the eave, apply 36-inchwide (914 mm) sheets of underlayment, overlapping successive sheets 19 inches (483 mm), end laps shall be 6 inches and shall be offset by 6 feet. The underlayment shall be attached to a nailable deck with corrosion-resistant fasteners with one row centered in the field of the sheet with a maximum fastener spacing of 12 inches (305 mm) o.c., and one row at the end and side laps fastened 6 inches (152 mm) o.c. Underlayment shall be attached using annular ring or deformed shank nails with metal or plastic caps with a nominal cap diameter of not less than 1 inch. Metal caps are required where the ultimate design wind speed, \(V_{ult} \), equals or exceeds 170 mph. Metal caps shall have a thickness of not less than 32-gage sheet metal. Power-driven metal caps shall have a minimum thickness of 0.010 inch. Minimum thickness of the outside edge of plastic caps shall be 0.035 inch. The cap nail shank shall be not less than 0.083 inch for ring shank cap nails. Cap nail shank shall have a length sufficient to penetrate through the roof sheathing or not less than 3/4 inch into the roof sheathing.
Exception: Compliance with Section 1507.1.1.2 is not required where a fully adhered underlayment is applied in accordance with Section 1507.3.3.

1507.1.1.3 Underlayment for wood shakes and shingles. Underlayment for wood shakes and shingles shall comply with one of the following methods:

1. A minimum 4-inch-wide (102 mm) strip of self-adhering polymer-modified bitumen membrane complying with ASTM D1970, installed in accordance with the manufacturer’s instructions for the deck material, shall be applied over all joints in the roof decking. An approved underlayment in accordance with Table 1507.1.1.1 for the applicable roof covering shall be applied over the entire roof over the 4-inch-wide (102 mm) membrane strips.

2. A minimum 3 ¾-inch wide (96 mm) strip of self-adhering flexible flashing tape complying with AAMA 711-13, Level 3 (for exposure up to 176° F (80° C)), installed in accordance with the manufacturer’s instructions for the deck material, shall be applied over all joints in the roof decking. An underlayment complying with Table 1507.1.1.1 for the applicable roof covering shall be applied over the entire roof over the 4-inch-wide (102 mm) flashing strips.

3. Two layers of ASTM D226 Type II or ASTM D4869 Type III or Type IV underlayment shall be installed as follows: Apply a 19-inch (483 mm) strip of underlayment felt parallel to and starting at the eaves, fastened sufficiently to hold in place. Starting at the eave, apply 36-inchwide (914 mm) sheets of underlayment, overlapping successive sheets 19 inches (483 mm), end laps shall be 6 inches and shall be offset by 6 feet. The underlayment shall be attached to a nailable deck with corrosion-resistant fasteners with one row centered in the field of the sheet with a maximum fastener spacing of 12 inches (305 mm) o.c., and one row at the end and side laps fastened 6 inches (152 mm) o.c. Underlayment shall be attached using annular ring or deformed shank nails with metal or plastic caps with a nominal cap diameter of not less than 1 inch. Metal caps are required where the ultimate design wind speed, V_{ult}, equals or exceeds 170 mph. Metal caps shall have a thickness of not less than 32-gage sheet metal. Power-driven metal caps shall have a minimum thickness of 0.010 inch. Minimum thickness of the outside edge of plastic caps shall be 0.035 inch. The cap nail shank shall be not less than 0.083 inch for ring shank cap nails. Cap nail shank shall have a length sufficient to penetrate through the roof sheathing or not less than 3/4 inch into the roof sheathing.

1507.2.5 Asphalt shingles. Asphalt shingles shall have self-seal strips or be interlocking and comply with ASTM D225 or ASTM D3462. Shingles shall also comply with Section Table 1507.2.7.1. Asphalt shingle packaging shall bear labeling indicating compliance with ASTM D7158 Class H one of the required classifications as shown in Table 1507.2.7.1.

1507.2.7.1 Wind resistance of asphalt shingles. Asphalt shingles shall be classified in accordance with ASTM D3161, ASTM D7158 as Class H, or TAS 107. Shingles classified as ASTM D3161 Class D or ASTM D7158 Class G are acceptable for use where V_{wed} is equal to or less than 100 mph. Shingles classified as ASTM D3161 Class F, ASTM D7158 Class H or TAS 107 are acceptable for use for all wind speeds. Asphalt shingle wrappers shall indicate compliance with ASTM D7158 Class H, one of the required classifications, as shown in Table 1507.2.7.1.
TABLE 1507.2.7.1

CLASSIFICATION OF ASPHALT SHINGLES

(Delete Table 1507.2.7.1)

1507.2.7.2 Asphalt shingle installation at eaves. Asphalt shingle starter strips at eaves shall comply with one of the following:

1. Set starter strips in a minimum 8-in.-wide strip of compatible roofing cement. The maximum thickness of roofing cement shall be ⅛ in. Starter strips shall also be fastened parallel to the eaves along a line above the eave line according to the manufacturer’s specifications. Fasteners shall be positioned so they will not be exposed under the cutouts in the first course. Starter strips and shingles must not extend more than ¼ in. beyond the drip edge.

2. A self-adhering starter strip complying with the manufacturer’s instructions with asphalt adhesive strips at the eave. The starter strip shall be installed so that starter strip adheres to and covers the drip edge top surface.

1507.2.7.3 Asphalt shingle installation at gable rakes. Asphalt shingles at gable rakes shall comply with one of the following:

1. Shingles at gable rakes shall be set in a minimum 8-in.-wide strip of compatible roofing cement. The maximum thickness of roofing cement shall be ⅛ in. Shingles at gable rakes shall also be fastened in accordance with the manufacturer’s specifications.

2. Set starter strips at gable rakes in a minimum 8-in.-wide strip of compatible roofing cement. The maximum thickness of roofing cement shall be ⅛ in. Starter strips shall be fastened parallel to the gable rake according to the manufacturer’s specifications. Fasteners shall be positioned so they will not be exposed under the cutouts in the first course. Starter strips and shingles must not extend more than ¼ in. beyond the drip edge.

3. A self-adhering starter strip complying with the manufacturer’s instructions with asphalt adhesive strips at the gable rake. The starter strip shall be installed so that starter strip adheres to and covers the drip edge top surface.

1507.2.9.3 Drip edge. Provide drip edge at eaves and gables of shingle roofs. Overlap to be a minimum of 3 inches (76 mm). Eave drip edges shall extend 1/2 inch (13 mm) below sheathing and extend back on the roof a minimum of 2 inches (51 mm). Drip edge at eaves shall be permitted to be installed either over or under the underlayment. If installed over the underlayment, there shall be a minimum 4 inches (51 mm) width of roof cement shall be installed over the drip edge flange. Drip edge shall be mechanically fastened a maximum of 4 12 inches (102 305 mm) on center with ring shank nails. Fasteners shall be placed in an alternating (staggered) pattern along the length of the drip edge with adjacent fasteners placed near opposite edges of the leg/flange of drip edge on the roof. Where the V_{ave}, as determined in accordance with Section 1609.3.1, is 110 mph (177 km/h) or greater or the mean roof height exceeds 33 feet (10 058 mm), drip edges shall be mechanically fastened a maximum of 4 inches (102 mm) on center.
1507.3.7 Attachment. Clay and concrete roof tiles shall be fastened in accordance with Section 1609 or in accordance with FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Sixth Fifth Edition where the basic wind speed, V_{asd}, is determined in accordance with Section 1609.3.1.

Exceptions:

1. Concrete and clay tiles shall be mechanically attached or adhesive-set. Mortar attachment of concrete and clay roof tile is not permitted.
2. Hip and ridge concrete and clay tiles shall be attached to a ridge board.
3. At eaves, each tile in the first course of tiles shall be secured with a metal clip or be adhesive-set.
4. For buildings located within 3000 ft. of the coast, all metal clips, straps, and fasteners shall be stainless steel.

1507.3.2 Deck slope. Clay and concrete roof tile shall be installed in accordance with the recommendations of FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Fifth Sixth Edition where the V_{asd} as determined in accordance with Section 1609.3.1 or the recommendations of RAS 118, 119 or 120.

1507.3.3 Underlayment. Unless otherwise noted, underlayment shall be applied according to the underlayment manufacturer’s installation instructions or the recommendations of the FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Fifth Sixth Edition where the basic wind speed, V_{asd}, is determined in accordance with Section 1609.3.1 or the recommendations of RAS 118, 119 or 120.

1507.3.3.1 Slope and underlayment requirements. Refer to FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Fifth Sixth Edition (2012) where the basic wind speed V_{asd} is determined in accordance with Section 1609.3.1 for underlayment and slope requirements for specific roof tile systems or the recommendations of RAS 111, 118, 119 or 120.

1507.3.7 Attachment. Clay and concrete roof tiles shall be fastened in accordance with Section 1609 or in accordance with FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Fifth Sixth Edition where the basic wind speed, V_{asd}, is determined in accordance with Section 1609.3.1.

1507.3.8 Application. Tile shall be applied according to the manufacturer’s installation instructions or recommendations of the FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Fifth Sixth Edition where the basic wind speed, V_{asd}, is determined in accordance with Section 1609.3.1 or the recommendation of RAS 118, 119 or 120.

1507.3.9 Flashing. At the juncture of the roof vertical surfaces, flashing and counterflashing shall be provided in accordance with the manufacturer’s installation instructions or the recommendations of the FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Fifth Sixth Edition where the basic wind speed, V_{asd}, is determined in accordance with Section 1609.3.1 or the recommendation of RAS 118, 119 or 120.

1510.7.1 Wind resistance. Rooftop-mounted photovoltaic systems shall be designed for wind loads in accordance with ASCE 7 for component and cladding in accordance with Chapter 16 using an effective wind area based on the dimensions of a single unit frame.
CHAPTER 16
STRUCTURAL DESIGN
Revise the following sections to read as follows:

1602.1 Definitions. The following terms are defined in Chapter 2:

\[V_{ult} = \text{Ultimate design wind speeds (3-second gust), miles per hour (mph) (km/hr) determined from Figure 1609.3(1), 1609.3(2), 1609.3(3), 1609.3(4) or ASCE 7.} \]

1609.1.1 Determination of wind loads. Wind loads on every building or structure shall be determined in accordance with Chapters 26 to 30 of ASCE 7 or provisions of the alternate all-heights method in Section 1609.6. Wind shall be assumed to come from any horizontal direction and wind pressures shall be assumed to act normal to the surface considered.

Exceptions: (no change to exceptions)

The wind speeds in Figures 1609.3(1), 1609.3(2) and 1609.3(3), and 1609.3(4) are ultimate design wind speeds, \(V_{ult} \), and shall be converted in accordance with Section 1609.3.1 to nominal design wind speeds, \(V_{asd} \), when the provisions of the standards referenced in Exceptions 4 and 5 are used.

1609.1.2 Protection of openings. In wind-borne debris regions, glazed openings, exterior doors, and garage doors in buildings shall be impact resistant or protected with an impact-resistant covering meeting the requirements of ANSI/DASMA 115 (for garage doors and rolling doors) or TAS 201, 202 and 203, AAMA 506, ASTM E1996 and ASTM E1886 referenced herein, or an approved impact-resistant standard as follows:

1. Glazed openings located within 30 feet (9144 mm) of grade shall meet the requirements of the large missile test of ASTM E1996.
2. Glazed openings located more than 30 feet (9144 mm) above grade shall meet the provisions of the small missile test of ASTM E1996.
3. Storage sheds that are not designed for human habitation and that have a floor area of 720 square feet (67 m²) or less are not required to comply with the mandatory windborne debris impact standards of this code.
4. Openings in sunrooms, balconies or enclosed porches constructed under existing roofs or decks are not required to be protected provided the spaces are separated from the building interior by a wall and all openings in the separating wall are protected in accordance with Section 1609.1.2 above. Such spaces shall be permitted to be designed as either partially enclosed or enclosed structures.

Exceptions:
1. Plywood and wood structural panels with a minimum thickness of 19/32-inch (15 mm) 7/16-inch (11.1 mm) and maximum span between lines of fasteners of 44 inches (1118 mm) shall be permitted for opening protection in one-story Group R-3 or R-4 occupancy buildings with a mean roof height of 33 feet (10 058 mm) or less where \(V_{ult} \) is 180 mph (80 m/s) or less. Panels shall be precut to overlap the wall such that they extend a minimum of 2 inches (50.8 mm) beyond the lines of fasteners and are attached...
to the framing surrounding the opening containing the product with the glazed opening. Panels shall be predrilled as required for the attachment method and secured with corrosion-resistant attachment hardware permanently installed on the building.

a. Attachments shall be designed to resist the components and cladding loads determined in accordance with the provisions of ASCE 7, with corrosion-resistant attachment hardware provided and anchors permanently installed on the building.
b. As an alternative, panels shall be fastened at 16 inches (406.4 mm) on center along the edges of the opposing long sides of the panel.

i. For wood frame construction, fasteners shall be located on the wall such that they are embedded into the wall framing members, nominally a minimum of 1 inch (25.4 mm) from the edge of the opening and 2 inches (50.8 mm) inward from the panel edge. Permanently installed anchors used for buildings with wood frame wall construction shall have the threaded portion that will be embedded into the wall framing based on 1/4-inch (6.35 mm) lag screws and shall be long enough to penetrate through the exterior wall covering with sufficient embedment length to provide an allowable minimum 300 pounds ASD design withdrawal capacity.

ii. For concrete or masonry wall construction, fasteners shall be located on the wall a minimum of 1 1/2 inches (37.9 mm) from the edge of the opening and 2 inches (50.8 mm) inward of the panel edge. Permanently installed anchors in concrete or masonry wall construction shall have an allowable minimum 300 pounds ASD design withdrawal capacity and an allowable minimum 525 pounds ASD design shear capacity with a 1 ½ inch edge distance. Hex nuts, washered wing-nuts, or bolts used to attach the wood structural panels to the anchors shall be minimum ¼-inch (6.4 mm) hardware and shall be installed with or have integral washers with a minimum 1-inch (25 mm) outside diameter.

iii. Vibration-resistant alternative attachments designed to resist the component and cladding loads determined in accordance with provisions of ASCE 7 shall be permitted.

2. Glazing in Risk Category I buildings, including greenhouses that are occupied for growing plants on a production or research basis, without public access shall be permitted to be unprotected.

3. Glazing in Risk Category II, III or IV buildings located over 60 feet (18 288 mm) above the ground and over 30 feet (9144 mm) above aggregate surface roofs located within 1,500 feet (458 m) of the building shall be permitted to be unprotected.

1609.1.3 Impact protection for Risk Category III and IV buildings. For Risk Category III and IV buildings, all parts or systems of a building or structure envelope such as, but not limited, to exterior walls, roof, outside doors, skylights, glazing and glass block shall be impact resistant or protected with an impact-resistant covering meeting the requirements of ANSI/DASMA 115 (for garage doors and rolling doors) or TAS 201, 202 and 203, AAMA 506, or ASTM E1996 and ASTM E1886 referenced herein.

Exception: The following structures or parts of structures shall not be required to meet the provisions of this section:

a. Roof assemblies for screen rooms, porches, canopies, etc., attached to a building that do not breach the exterior wall or building envelope and have no enclosed sides other than screen.
b. Soffits, soffit vents and ridge vents.
c. Vents in garages with four or fewer cars.
d. Exterior wall or roof openings for wall- or roof-mounted HVAC equipment.
e. Openings for roof-mounted personnel access roof hatches.
f. Louvers in compliance with Section 1609.1.2.1.
g. Exterior balconies or porches under existing roofs or decks enclosed with screen or removable vinyl and acrylic panels complying with Chapter 20 shall not be required to be protected and openings in the wall separating the unit from the balcony or porch shall not be required to be protected unless required by other provisions of this code.

1609.1.3.1 Construction assemblies deemed to comply with Section 1609.1.3. The following assemblies are deemed to comply with Section 1609.1.3:
1. Exterior concrete masonry walls of minimum nominal 8-inch (203 mm) thickness, constructed in accordance with Chapter 21.
2. Exterior frame walls or gable ends constructed in accordance with Chapters 22 and 23 sheathed with a minimum 19/32-inch (15 mm) CD exposure 1 plywood and clad with wire lath and stucco installed in accordance with Chapter 25 of this code.
3. Exterior frame walls and roofs constructed in accordance with Chapter 22 of this code sheathed with a minimum 24-gage rib-deck-type material and clad with an approved wall finish.
4. Exterior reinforced concrete elements constructed of solid normal weight concrete, designed in accordance with Chapter 19 and having a minimum thickness of 2 inches (51 mm).
5. Roof systems constructed in accordance with Chapter 22 or Chapter 23 of this code, sheathed with a minimum 19/32-inch (15 mm) CD exposure 1 plywood or minimum nominal 1-inch (25 mm) wood decking and surfaced with an approved roof system installed in accordance with Chapter 15 of this code.

1609.3 Ultimate design wind speed. The ultimate design wind speed, V_{ult}, in mph, for the determination of the wind loads shall be determined by Figures 1609.3(1), 1609.3(2) and 1609.3(3), and 1609.3(4). The ultimate design wind speed, V_{ult}, for use in the design of Risk Category II buildings and structures shall be obtained from Figure 1609.3(1). The ultimate design wind speed, V_{ult}, for use in the design of Risk Category III and IV buildings and structures shall be obtained from Figure 1609.3(2). The ultimate design wind speed, V_{ult}, for use in the design of Risk Category IV buildings and structures shall be obtained from Figure 1609.3(3). The ultimate design wind speed, V_{ult}, for use in the design of Risk Category I buildings and structures shall be obtained from Figure 1609.3(4). The ultimate design wind speed, V_{ult}, for use in the design of Risk Category I buildings and structures shall be in accordance with Chapter 26 Section 26.5.1 of ASCE 7. The exact location of wind speed lines shall be established by local ordinance using recognized physical landmarks such as major roads, canals, rivers and lake shores wherever possible.

In non-hurricane-prone regions, when the ultimate design wind speed, V_{ult}, is estimated from regional climatic data, the ultimate design wind speed, V_{ult}, shall be determined in accordance with Section 26.5.3 of ASCE 7.

1609.3.1 Wind speed conversion. When required, the ultimate design wind speeds of Figures 1609.3(1), 1609.3(2), and 1609.3(3) and 1609.3(4) shall be converted to nominal design wind speeds, V_{asd}, using Table 1609.3.1 or Equation 16-33.

$$V_{asd} = V_{ult} \times 0.6$$ (Equation 16-33)

where:

V_{asd} = Nominal design wind speed applicable to methods specified in Exceptions 4 and 5 of Section 1609.1.1.
V_{ult} = Ultimate design wind speeds determined Figures 1609.3(1), 1609.3(2), or 1609.3(3) or 1609.3(4).

| Table 1609.3.1 |
WIND SPEED CONVERSIONS$^{a, b, c}$

(no change to table values)

For SI: 1 mile per hour = 0.44 m/s.

a. Linear interpolation is permitted.
b. V_{asd} = nominal design wind speed applicable to methods specified in Exceptions 1 through 5 of Section 1609.1.1.
c. V_{ult} = ultimate design wind speeds determined from Figure 1609.3(1), 1609.3(2), or 1609.3(3) or 1609.3(4).

FIGURE 1609.3(3)
ULTIMATE DESIGN WIND SPEEDS, V_{ult}, FOR RISK CATEGORY IV BUILDINGS AND OTHER STRUCTURES

(figure not shown for brevity)

FIGURE 1609.3(4) 1609.3(3)
ULTIMATE DESIGN WIND SPEEDS, V_{ult}, FOR RISK CATEGORY I BUILDINGS AND OTHER STRUCTURES
CHAPTER 17
SPECIAL INSPECTIONS AND TESTS

Revise the following sections to read as follows:

1709.5.1 Exterior windows and doors. Exterior windows and sliding doors shall be tested and labeled as conforming to AAMA/WDMA/CSA101/I.S.2/A440 or TAS 202 (HVHZ shall comply with TAS 202 and ASTM E1300 or Section 2404). Exterior windows shall be compressed seal types such as awnings, casements, or fixed assemblies. Exterior side-hinged doors shall be tested and labeled as conforming to AAMA/WDMA/CSA101/I.S.2/A440 or comply with Section 1709.5.2. Products tested and labeled as conforming to AAMA/WDMA/CSA 101/I.S.2/A440 shall not be subject to the requirements of Sections 2403.2 and 2403.3. Exterior windows and doors shall be labeled with a permanent label, marking, or etching providing traceability to the manufacturer and product. The following shall also be required either on a permanent label or on a temporary supplemental label applied by the manufacturer: information identifying the manufacturer, the product model/series number, positive and negative design pressure rating, product maximum size tested, impact-resistant rating if applicable, Florida product approval number or Miami-Dade product approval number, applicable test standard(s), performance grade and approved product certification agency, testing laboratory, evaluation entity or Miami-Dade product approval. The product performance grade shall match the positive design pressure rating. The labels are limited to one design pressure rating per referenced standard. The temporary supplemental label shall remain on the window or door until final approval by the building official.

Exceptions: (no change to exceptions)

1709.5.2 Exterior windows and door assemblies not provided for in Section 1709.5.1. Exterior window and door assemblies shall be tested in accordance with ASTM E330 or TAS 202 (HVHZ shall comply with TAS 202). Exterior window and door assemblies containing glass shall comply with Section 2403. The design pressure for testing shall be calculated in accordance with Chapter 16. Each assembly shall be tested for 10 seconds at a load equal to 1.5 times the design pressure. Exterior wind and door assemblies shall also be tested in accordance with ASTM E547 for water penetration resistance. The minimum water penetration resistance test pressure shall be 20% of the positive design wind pressure rating.

Exceptions: (no change to exceptions)

1709.10 Soffit.
1709.10.1 Product approval. Manufactured soffit materials and systems shall be subject to statewide or local product approval as specified in Florida Administrative Code Rule 61G-20. The net free area of the manufactured soffit material or system shall be included in the product approval submittal documents.
1709.10.2 Labels. Individual manufactured soffit pieces shall be marked at not more than 4 feet (1.2 m) on center with a number or marking that ties the product back to the manufacturer.
1709.10.3 The following information shall be included on the manufactured soffit material packaging or on the individual manufactured soffit material or system pieces:
 1. Product approval holder and/or manufacturer name and city and state of manufacturing plant.
 2. Product model number or name.
3. Method of approval and approval numbers as applicable. Methods of approval include, but are not limited to: Florida Building Commission FL #; Miami-Dade NOA; TDI Product Evaluation; and ICC-ES.
4. The test standard or standards specified in Chapter 14 used to demonstrate code compliance.
5. The net free area shall be included on the packaging or label.

1709.10.4 Wind resistance of soffits. Soffits and their attachments shall be capable of resisting wind loads specified in Section 1609 for walls using an effective wind area of 10 square feet.

1709.10.5 Wind-driven rain resistance of soffits. All ventilated soffit panels shall be tested for wind-driven rain resistance in accordance with TAS 100(A).

1709.10.6 Soffit installation. Soffit installation shall comply with Section 1709.10.6.1, 1709.10.6.2, 1709.10.6.3, or 1709.10.6.4.

1709.10.6.1 Vinyl soffit panels. Vinyl soffit panels shall be installed using fasteners specified by the manufacturer and shall be fastened at both ends to a supporting component such as a nailing strip, fascia or sub-fascia component in accordance with Figure 1709.10.6.1(1). Where the unsupported span of soffit panels is greater than 12 inches, intermediate nailing strips shall be provided in accordance with Figure 1709.10.6.1(2) unless a larger span is permitted in accordance with the manufacturer’s product approval specification. Vinyl soffit panels shall be installed in accordance with the manufacturer’s product approval specification and limitations of use. Fascia covers shall be installed in accordance with the manufacturer’s product approval specification and limitations of use.
FIGURE 1709.10.6.1(1)

TYPICAL SINGLE SPAN VINYL SOFFIT PANEL SUPPORT
FIGURE 1709.10.6.1(2)

TYPICAL MULTI-SPAN VINYL SOFFIT PANEL SUPPORT

1709.10.6.2 Fiber-cement soffit panels. Fiber-cement soffit panels shall be a minimum of 1/4 inch thick and shall comply with the requirements of ASTM C1186, Type A, minimum Grade II or ISO 8336, Category A, minimum Class 2. Panel joints shall occur over framing or over wood structural panel sheathing. Soffit panels shall be installed with spans and fasteners in accordance with the manufacturer’s product approval specification and limitations of use.

1709.10.6.3 Hardboard soffit panels. Where the design wind pressure is 30 psf or less, soffit panels shall be a minimum of 7/16 inch in thickness and shall be fastened to framing or nailing strips with 2 ½” x 0.113” siding nails spaced not more than 6 inches on center at panel edges and 12 inches on center at intermediate supports. Where the design wind pressure is greater than 30 psf, hardboard soffit panels shall be installed in accordance with the manufacturer’s product approval specification and limitations of use.

1709.10.6.4 Wood structural panel soffit prescriptive alternative. Wood structural panel soffit panels are permitted to be installed in accordance with Table 1709.10.6.4.
INSTALLATION REQUIREMENTS FOR WOOD STRUCTURAL PANEL, CLOSED SOFFITb,c,d,e,f

<table>
<thead>
<tr>
<th>Maximum Design Pressure (- or + psf)</th>
<th>Minimum Panel Span Rating</th>
<th>Minimum Panel Performance Category</th>
<th>Nail Type and Size (inch)</th>
<th>Fastenera Spacing along Edges and Intermediate Supports (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Galvanized Steel</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>30</td>
<td>24/0</td>
<td>3/8</td>
<td>6d box (2 x 0.099 x 0.266 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>24/0</td>
<td>3/8</td>
<td>6d box (2 x 0.099 x 0.266 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>24/0</td>
<td>3/8</td>
<td>6d box (2 x 0.099 x 0.266 head diameter)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8d common (2(\frac{1}{2}) x 0.131 x 0.281 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>24/0</td>
<td>3/8</td>
<td>6d box (2 x 0.099 x 0.266 head diameter)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8d common (2(\frac{1}{2}) x 0.131 x 0.281 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>70</td>
<td>24/16</td>
<td>7/16</td>
<td>8d common (2(\frac{1}{2}) x 0.131 x 0.281 head diameter)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10d box (3 x 0.128 x 0.312 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>80</td>
<td>24/16</td>
<td>7/16</td>
<td>8d common (2(\frac{1}{2}) x 0.131 x 0.281 head diameter)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10d box (3 x 0.128 x 0.312 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>90</td>
<td>32/16</td>
<td>15/32</td>
<td>8d common (2(\frac{1}{2}) x 0.131 x 0.281 head diameter)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10d common (3 x 0.148 x 0.312 head diameter)</td>
<td>6</td>
</tr>
</tbody>
</table>

a Fasteners shall comply with Section 1405.17.
b Maximum spacing of soffit framing members shall not exceed 24 inches.
c Wood structural panels shall be of an exterior exposure grade.
d Wood structural panels shall be installed with strength axis perpendicular to supports with a minimum of two continuous spans.
e Wood structural panels shall be attached to soffit framing members with specific gravity of at least 0.42. Framing members shall be minimum 2x3 nominal with the larger dimension in the cross section aligning with the length of fasteners to provide sufficient embedment depths.
f Spacing at intermediate supports is permitted to be 12 inches on center.

CHAPTER 19

CONCRETE

Revise the following sections to read as follows:
1909.1 Reinforced concrete. The design and construction of reinforced concrete for buildings sited in areas where the ultimate design wind speed, \(V_{ult} \), is equal to or greater than 115 mph (45 m/s) in accordance with Figure 1609.3(1), 1609.3(2), or 1609.3(3), or 1609.3(4) shall conform to the requirements of ACI 318 or with Section 1609.1.1, Exception 1, as applicable, except as modified in this section.

CHAPTER 23
WOOD

Revise the following sections to read as follows:

2304.6 Exterior wall sheathing. Wall sheathing on the outside of exterior walls, including gables, and the connection of the sheathing to framing shall be designed in accordance with the general provisions of this code and shall be capable of resisting wind pressures in accordance with Section 1609. Wood structural panel wall sheathing shall be plywood with a minimum panel thickness of 19/32 inch.

2304.8.2 Structural roof sheathing. Structural roof sheathing shall be designed in accordance with the general provisions of this code and the special provisions in this section. Roof sheathing conforming to the provisions of Table 2304.8(1), 2304.8(2), 2304.8(3) or 2304.8(5) shall be deemed to meet the requirements of this section, except wood structural panel roof sheathing shall be plywood with a minimum panel thickness of 19/32 inch. Wood structural panel roof sheathing shall be bonded by exterior glue.

2304.10.1 Fastener requirements. Connections for wood members shall be designed in accordance with the appropriate methodology in Section 2301.2. The number and size of fasteners connecting wood members shall not be less than that set forth in Table 2304.10.1, except connections with staples shall not be permitted.

2304.10.2 Sheathing fasteners. Sheathing nails or other approved sheathing connectors shall be driven so that their head or crown is flush with the surface of the sheathing. Roof sheathing nails shall be ring shank roof sheathing (RSRS) nails complying with ASTM D1667.

2304.10.4 Other fasteners. Clips, staples, glues and other approved methods of fastening are permitted in accordance with their Product Approval where approved. Connections of wood members with staples is not permitted.

TABLE 2304.10.1—continued
FASTENING SCHEDULE
(excerpt)

<table>
<thead>
<tr>
<th>DESCRIPTION OF BUILDING ELEMENTS</th>
<th>NUMBER AND TYPE OF FASTENER</th>
<th>SPACING AND LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Edges (inches)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood structural panels (WSP), subfloor, roof and interior wall sheathing to framing and particleboard wall sheathing to framing*</td>
<td>6d common or deformed (2” × 0.113”) (subfloor and wall)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>8d box or deformed (2 1/4” × 0.113”) (See Section 2304.10.2 for minimum roof sheathing fasteners)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>23/8” × 0.113” nail (subfloor and wall)</td>
<td>6</td>
</tr>
</tbody>
</table>
Table 2305.2

<table>
<thead>
<tr>
<th>Description</th>
<th>E</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3/4" 16 gage staple, 7/16" crown (subfloor and wall)</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>2 3/8" x 0.113" nail (See Section 2304.10.2 for minimum roof sheathing fasteners)</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>1 3/4" 16 gage staple, 7/48" crown (roof)</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>8d common (2 1/2" x 0.131"); or 6d deformed (2" x 0.113") (subfloor and wall)</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>(See Section 2304.10.2 for minimum roof sheathing fasteners)</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>10d common (3" x 0.148"); or 8d deformed (2 1/2" x 0.131") (subfloor and wall)</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

2305.2 Diaphragm deflection

The deflection of wood frame diaphragms shall be determined in accordance with AWC SDPWS. The deflection (\(\Delta\)) of a blocked wood structural panel diaphragm uniformly fastened throughout with staples is permitted to be calculated in accordance with Equation 23-1. If not uniformly fastened, the constant 0.188 (For SI: 1/1627) in the third term shall be modified by an approved method.

\[
\Delta = \frac{5vL^3}{8EAb} + \frac{vL}{4Gt} + 0.188Le_n + \frac{\Sigma(\Delta X)}{2b}
\]

{Equation 23-1}

For SI: \(\Delta = \frac{0.052vL^3}{EAb} + \frac{vL}{4Gt} + \frac{Le_n}{1627} + \frac{\Sigma(\Delta X)}{2b}\)

where:
- \(A\) = Area of chord cross section, in square inches (mm²).
- \(b\) = Diaphragm width, in feet (mm).
- \(E\) = Elastic modulus of chords, in pounds per square inch (N/mm²).
- \(e_n\) = Staple deformation, in inches (mm) [see Table 2305.2(1)].
- \(Gt\) = Panel rigidity through the thickness, in pounds per inch (N/mm) of panel width or depth [see Table 2305.2(2)].
- \(L\) = Diaphragm length, in feet (mm).
- \(v\) = Maximum shear due to design loads in the direction under consideration, in pounds per linear foot (plf) (N/mm).
- \(\Delta\) = The calculated deflection, in inches (mm).
2305.3 Shear wall deflection

The deflection of wood-frame shear walls shall be determined in accordance with AWC SDPWS. The deflection (Δ) of a blocked wood structural panel shear wall uniformly fastened throughout with staples is permitted to be calculated in accordance with Equation 23-2:

\[
\Delta = \frac{8vh^3}{EAb} + \frac{vh}{Gt} + 0.75he_n + d_a \frac{h}{b}
\]

For SI: \(\Delta = \frac{vh^3}{3EAb} + \frac{vh}{Gt} + \frac{he_n}{407.6} + d_a \frac{h}{b} \)

where:
- \(A \): Area of boundary element cross-section in square inches (mm²) (vertical member at shear wall boundary).
- \(b \): Wall width, in feet (mm).
- \(d_a \): Vertical elongation of overturning anchorage (including fastener slip, device elongation, anchor rod elongation, etc.) at the design shear load (v).
- \(E \): Elastic modulus of boundary element (vertical member at shear wall boundary), in pounds per square inch (N/mm²).
- \(e_n \): Staple deformation, in inches (mm) [see Table 2305.2(1)].
- \(G_t \): Panel rigidity through the thickness, in pounds per inch (N/mm) of panel width or depth [see Table 2305.2(2)].
- \(h \): Wall height, in feet (mm).
- \(v \): Maximum shear due to design loads at the top of the wall, in pounds per linear foot (N/mm).
- \(\Delta \): The calculated deflection, in inches (mm).

Table 2305.2(2)

VALUES OF Gt FOR USE IN CALCULATING DEFLECTION OF WOOD STRUCTURAL PANEL SHEAR WALLS AND DIAPHRAGMS

(Delete Table 2305.2(2))

2306.2 Wood-frame diaphragms

Wood-frame diaphragms shall be designed and constructed in accordance with AWC SDPWS. Where panels are fastened to framing members with staples, requirements and limitations of AWC SDPWS shall be met and the allowable shear values set forth in Table 2306.2(1) or 2306.2(2) shall be permitted. The allowable shear values in Tables 2306.2(1) and 2306.2(2) are permitted to be increased 40 percent for wind design.
TABLE 2306.2(1)
ALLOWABLE SHEAR VALUES (POUNDS PER FOOT) FOR WOOD STRUCTURAL PANEL DIAPHRAGMS UTILIZING STAPLES WITH FRAMING OF DOUGLAS FIR-LARCH, OR SOUTHERN PINEa FOR WIND OR SEISMIC LOADINGc

(Delete Table 2306.2(1))

TABLE 2306.2(2)
ALLOWABLE SHEAR VALUES (POUNDS PER FOOT) FOR WOOD STRUCTURAL PANEL-BLOCKED DIAPHRAGMS UTILIZING MULTIPLE ROWS OF STAPLES (HIGH LOAD DIAPHRAGMS) WITH FRAMING OF DOUGLAS FIR-LARCH OR SOUTHERN PINEa FOR WIND OR SEISMIC LOADINGb, f, g, h

(Delete Table 2306.2(2))

2306.3 Wood-frame shear walls. Wood-frame shear walls shall be designed and constructed in accordance with AWC SDPWS. Where panels are fastened to framing members with staples, requirements and limitations of AWC SDPWS shall be met and the allowable shear values set forth in Table 2306.3(1), 2306.3(2) or 2306.3(3) shall be permitted. The allowable shear values in Tables 2306.3(1) and 2306.3(2) are permitted to be increased 40 percent for wind design. Panels complying with ANSI/APA PRP-210 shall be permitted to use design values for Plywood Siding in the AWC SDPWS.

TABLE 2306.3(1)
ALLOWABLE SHEAR VALUES (POUNDS PER FOOT) FOR WOOD STRUCTURAL PANEL SHEAR WALLS UTILIZING STAPLES WITH FRAMING OF DOUGLAS FIR-LARCH OR SOUTHERN PINEa FOR WIND OR SEISMIC LOADINGb, f, g, i

(Delete Table 2306.3(1))

TABLE 2306.3(2)
ALLOWABLE SHEAR VALUES (plf) FOR WIND OR SEISMIC LOADING ON SHEAR WALLS OF FIBERBOARD SHEATHING BOARD CONSTRUCTION UTILIZING STAPLES FOR TYPE V CONSTRUCTION ONLYb, c, d, e

(Delete Table 2306.3(2))

TABLE 2306.3(3)
ALLOWABLE SHEAR VALUES FOR WIND OR SEISMIC FORCES FOR SHEAR WALLS OF LATH AND PLASTER OR GYPSUM BOARD WOOD-FRAMED WALL ASSEMBLIES UTILIZING STAPLES

(Delete Table 2306.3(3))

CHAPTER 25
GYPSUM BOARD, GYPSUM PANEL PRODUCTS AND PLASTER
Revise the following sections to read as follows:
Water-resistive barriers. Water-resistive barriers shall be installed as required in Section 1404.2 and, where applied over wood-based sheathing, shall include a water-resistive vapor-permeable barrier with a performance at least equivalent to two layers of water-resistive barrier complying with ASTM E2556, Type I. The individual layers shall be installed independently such that each layer provides a separate continuous plane and any flashing (installed in accordance with Section 1405.4) intended to drain to the water-resistive barrier is directed between the layers. A minimum 3/16-inch (4.8 mm) ventilated drainage space shall be required between the two layers.

Exception: A ventilated drainage space having a minimum drainage efficiency of 90% as measured in accordance with ASTM E2273 or Annex A2 of ASTM E2925 shall be permitted in lieu of a clear air space. Where the water-resistive barrier that is applied over wood-based sheathing has a water resistance equal to or greater than that of a water-resistive barrier complying with ASTM E2556, Type II and is separated from the stucco by an intervening, substantially nonwatery-absorbing layer or drainage space.

CHAPTER 35
REFERENCE STANDARDS
Revise the following sections to read as follows:

ASCE/SEI

American Society of Civil Engineers
Structural Engineering Institute 1801 Alexander Bell Drive

7—1016 Minimum Design Loads and Associated Criteria for Buildings and Other Structures
SOURCES AND REFERENCES

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Source/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required inspections</td>
<td>7th Edition (2020) FBC</td>
</tr>
<tr>
<td>Update wind design to ASCE 7-16</td>
<td>7th Edition (2020) FBC</td>
</tr>
<tr>
<td>Walls constructed according to the masonry and concrete chapters in the code</td>
<td>FBC HRAC recommendation</td>
</tr>
<tr>
<td>Brick veneer tie attachment and spacing</td>
<td>FEMA P-499 TFS 5.4</td>
</tr>
<tr>
<td>Face-nailing fiber cement lap siding</td>
<td>FEMA Hurricane Harvey MAT report
FEMA P-499 TFS 5.3
FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td>Vinyl siding design wind pressure increase</td>
<td>Wind Loads on Components of Multi-Layer Wall Systems with Air-Permeable Exterior Cladding, IBHS</td>
</tr>
<tr>
<td>Wind resistance of gutters</td>
<td>FEMA Hurricane Charley, Hurricane Ivan, and Hurricane Katrina MAT reports
ICC Code Development process, code changes S24-16 and S17-19</td>
</tr>
<tr>
<td>Metal panel roof systems tested in accordance with ASTM E1592</td>
<td>FBC HRAC recommendation
FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td>Ridge vent testing for wind loads and wind-driven rain</td>
<td>FBC HVHZ
FEMA Hurricane Michael Recovery Advisory 2
FEMA P-499 TFS 7.5</td>
</tr>
<tr>
<td>Underlayment/Sealed roof deck</td>
<td>IBHS Fortified Roof
FEMA Hurricane Michael Recovery Advisory 2
FEMA P-499 TFS 7.2</td>
</tr>
<tr>
<td>Asphalt shingle classification</td>
<td>FEMA Hurricane Harvey Recovery Advisory 2
General enhanced construction recommendation</td>
</tr>
<tr>
<td>Asphalt shingle installation</td>
<td>IBHS Fortified Roof
FEMA Hurricane Harvey Recovery Advisory 2</td>
</tr>
<tr>
<td>Drip edge installation</td>
<td>IBHS Fortified Roof</td>
</tr>
<tr>
<td>Concrete and clay tile installation</td>
<td>FEMA P-499 TFS 7.4
7th Edition (2020) FBC</td>
</tr>
<tr>
<td>Impact protection for windows, doors, and garage doors</td>
<td>IBHS Fortified Silver
FBC HVHZ</td>
</tr>
<tr>
<td>Impact protection of entire envelope for Risk Category III and IV buildings</td>
<td>FBC HVHZ
General enhanced construction recommendation</td>
</tr>
<tr>
<td>Component</td>
<td>Sources</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Window and door types and testing</td>
<td>General enhanced construction recommendation</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td></td>
<td>University of Florida report to FBC - Comparison of Severe Wind-Driven Rain Test Methods for Fenestration</td>
</tr>
<tr>
<td>Soffit installation and testing</td>
<td>FEMA Hurricane Irma Recovery Advisory 2</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td></td>
<td>FBC HVHZ</td>
</tr>
<tr>
<td></td>
<td>IBHS Fortified Silver</td>
</tr>
<tr>
<td></td>
<td>7th Edition (2020) FBC Residential</td>
</tr>
<tr>
<td>Wall and roof sheathing thickness and type</td>
<td>FBC HVHZ</td>
</tr>
<tr>
<td>Roof sheathing attachment</td>
<td>IBHS Fortified Roof</td>
</tr>
<tr>
<td></td>
<td>7th Edition (2020) FBC</td>
</tr>
<tr>
<td>Water-resistive barriers (stucco)</td>
<td>2007 and 2010 FBC</td>
</tr>
<tr>
<td></td>
<td>Rainwater Management Performance of Newly Constricted Residential Building Enclosures During August and September 2004, Joseph Lstiburek</td>
</tr>
<tr>
<td></td>
<td>ICC Code Development process, code change RB246-19</td>
</tr>
</tbody>
</table>
(Stafford)

OPTIONAL ENHANCED CONSTRUCTION SUPPLEMENT
The provisions of this supplement provide enhanced construction techniques for strengthening the wind, water intrusion, flood, and storm surge provisions of the Florida Building Code. The recommendations are shown legislatively to the 6th Edition (2017) Florida Building Code, Residential (new text shown underlined and deleted text shown stricken-through) so local jurisdictions can easily see the recommended changes and adopt the provisions accordingly.

CHAPTER 3
BUILDING PLANNING

Revise the following sections to read as follows:

R301.2.1.1 Wind limitations and wind design required. The prescriptive provisions of this code for wood construction, cold-formed steel light-frame construction, and masonry construction shall not apply to the design of buildings where the ultimate design wind speed, V_{ult}, from Figure R301.2(4) equals or exceeds 115 miles per hour (51 m/s). The prescriptive provisions of this code include the sizing and attachment requirements specified in Sections R502, R503, R505, R602, R603, R606, R802 and R804.

Exceptions:
1. For concrete construction, the wind provisions of this code shall apply in accordance with the limitations of Sections R401, R402, R404 and R608.
2. For structural insulated panels, the wind provisions of this code shall apply in accordance with the limitations of Section R610.
3. Roof sheathing shall be installed in accordance with Section R803.

In regions where the ultimate design wind speed, V_{ult}, from Figure R301.2(4) equals or exceeds 115 miles per hour (51 m/s), the design of concrete, masonry, wood, and steel buildings for wind loads shall be in accordance with one or more of the following methods:

1. AF&PA Wood Frame Construction Manual (WFCM).
2. Concrete and masonry walls are permitted to be designed in accordance with ICC Standard for Residential Construction in High-Wind Regions (ICC 600).
4. AISI Standard for Cold-Formed Steel Framing—Prescriptive Method For One- and Two-Family Dwellings (AISI S230).
5. Florida Building Code, Building; or
6. The MAF Guide to Concrete Masonry Residential Construction in High Wind Areas shall be permitted for applicable concrete masonry buildings for a basic wind speed of 130 mph (58 m/s) or less in Exposure B and 110 mph (49 m/s) or less in Exposure C in accordance with Figure R301.2(4) as converted in accordance with R301.2.1.3.
The elements of design not addressed by the methods in Items 1 through 6 shall be in accordance with the provisions of this code. Wood structural panel roof and wall sheathing shall be plywood with a minimum panel thickness of 19/32 inch.

TABLE R301.2(2)
COMPONENT AND CLADDING LOADS FOR A BUILDING WITH A MEAN ROOF HEIGHT OF 30 FEET LOCATED IN EXPOSURE B (ASD) (psf)

\(a, b, c, d, e, f \)
<table>
<thead>
<tr>
<th>Zone</th>
<th>Effective Area 115</th>
<th>120</th>
<th>125</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>170</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4x</td>
<td>12</td>
<td>22.5</td>
<td>24.4</td>
<td>26.3</td>
<td>28.2</td>
<td>30.1</td>
<td>32.0</td>
<td>34.0</td>
<td>36.0</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>26.8</td>
<td>28.7</td>
<td>30.6</td>
<td>32.5</td>
<td>34.4</td>
<td>36.3</td>
<td>38.3</td>
<td>40.2</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>31.1</td>
<td>33.0</td>
<td>34.9</td>
<td>36.8</td>
<td>38.7</td>
<td>40.6</td>
<td>42.6</td>
<td>44.5</td>
</tr>
<tr>
<td>1/2x</td>
<td>12</td>
<td>27.1</td>
<td>29.0</td>
<td>30.9</td>
<td>32.8</td>
<td>34.7</td>
<td>36.6</td>
<td>38.6</td>
<td>40.5</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>31.4</td>
<td>33.3</td>
<td>35.2</td>
<td>37.1</td>
<td>39.0</td>
<td>41.0</td>
<td>42.9</td>
<td>44.8</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>35.7</td>
<td>37.6</td>
<td>39.5</td>
<td>41.4</td>
<td>43.3</td>
<td>45.3</td>
<td>47.2</td>
<td>49.1</td>
</tr>
<tr>
<td>1x</td>
<td>12</td>
<td>31.8</td>
<td>33.7</td>
<td>35.6</td>
<td>37.5</td>
<td>39.4</td>
<td>41.3</td>
<td>43.2</td>
<td>45.1</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>36.1</td>
<td>38.0</td>
<td>39.9</td>
<td>41.8</td>
<td>43.7</td>
<td>45.6</td>
<td>47.5</td>
<td>49.4</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>40.4</td>
<td>42.3</td>
<td>44.2</td>
<td>46.1</td>
<td>48.0</td>
<td>49.9</td>
<td>51.8</td>
<td>53.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-11.9</td>
<td>-26.4</td>
<td>-33.6</td>
<td>-31.2</td>
<td>-20.3</td>
<td>-26.4</td>
<td>-20.3</td>
<td>-19.1</td>
</tr>
<tr>
<td>2x</td>
<td>12</td>
<td>36.5</td>
<td>38.4</td>
<td>40.3</td>
<td>42.2</td>
<td>44.1</td>
<td>46.0</td>
<td>47.9</td>
<td>49.8</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>40.8</td>
<td>42.7</td>
<td>44.6</td>
<td>46.5</td>
<td>48.4</td>
<td>50.3</td>
<td>52.2</td>
<td>54.1</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>45.1</td>
<td>47.0</td>
<td>48.9</td>
<td>50.8</td>
<td>52.7</td>
<td>54.6</td>
<td>56.5</td>
<td>58.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.6</td>
<td>13.9</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>11.6</td>
<td>10.0</td>
</tr>
<tr>
<td>3x</td>
<td>12</td>
<td>41.2</td>
<td>43.1</td>
<td>45.0</td>
<td>46.9</td>
<td>48.8</td>
<td>50.7</td>
<td>52.6</td>
<td>54.5</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>45.5</td>
<td>47.4</td>
<td>49.3</td>
<td>51.2</td>
<td>53.1</td>
<td>55.0</td>
<td>56.9</td>
<td>58.8</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>49.8</td>
<td>51.7</td>
<td>53.6</td>
<td>55.5</td>
<td>57.4</td>
<td>59.3</td>
<td>61.2</td>
<td>63.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.1</td>
<td>13.6</td>
<td>11.3</td>
<td>11.3</td>
<td>11.3</td>
<td>11.3</td>
<td>12.1</td>
<td>12.1</td>
</tr>
<tr>
<td>4x</td>
<td>12</td>
<td>46.0</td>
<td>47.9</td>
<td>49.8</td>
<td>51.7</td>
<td>53.6</td>
<td>55.5</td>
<td>57.4</td>
<td>59.3</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>50.3</td>
<td>52.2</td>
<td>54.1</td>
<td>56.0</td>
<td>57.9</td>
<td>59.8</td>
<td>61.7</td>
<td>63.6</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>54.6</td>
<td>56.5</td>
<td>58.4</td>
<td>60.3</td>
<td>62.2</td>
<td>64.1</td>
<td>66.0</td>
<td>67.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.6</td>
<td>11.3</td>
<td>11.3</td>
<td>11.3</td>
<td>11.3</td>
<td>11.3</td>
<td>12.1</td>
<td>12.1</td>
</tr>
</tbody>
</table>

Note: Values are in miles per hour (mph).
For SI: 1 foot = 304.8 mm, 1 square foot = 0.0929 m², 1 mile per hour = 0.447 m/s, 1 pound per square foot = 0.0479 kPa.

a. The effective wind area shall be equal to the span length multiplied by an effective width. This width shall be permitted to not be less than one-third the span length. For cladding fasteners, the effective wind area shall not be greater than the area that is tributary to an individual fastener.

b. For effective areas between those given, the load shall be interpolated or the load associated with the lower effective area shall be used.

c. Table values shall be adjusted for height and exposure by multiplying by the adjustment coefficient in Table R301.2(3).

d. See Figure R301.2(7) for location of zones.

e. Plus and minus signs signify pressures acting toward and away from the building surfaces.

f. Table values have multiplied by 0.6 to convert component and cladding pressures to ASD.

g. Loads in Zone 1' are permitted to be determined in accordance with ASCE 7.

h. Where the ratio of the building mean roof height to length or width is less than 0.8, uplift loads are permitted to be determined in accordance with ASCE 7.

TABLE R301.2(2)
COMPONENT AND CLADDING LOADS FOR A BUILDING WITH A MEAN ROOF HEIGHT OF 30 FEET LOCATED IN EXPOSURE B (ASD) (psf)\(^{a,b,c,d,e,f}\)

(Delete Table R301.2(2))

TABLE R301.2(3)
HEIGHT AND EXPOSURE ADJUSTMENT COEFFICIENTS FOR TABLE R301.2(2)

<table>
<thead>
<tr>
<th>MEAN ROOF HEIGHT (ft)</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.82 (\pm0.08)</td>
<td>1.21</td>
<td>1.47</td>
</tr>
<tr>
<td>20</td>
<td>0.89 (\pm0.08)</td>
<td>1.29</td>
<td>1.55</td>
</tr>
<tr>
<td>25</td>
<td>0.94 (\pm0.08)</td>
<td>1.35</td>
<td>1.61</td>
</tr>
<tr>
<td>30</td>
<td>1.00</td>
<td>1.40</td>
<td>1.66</td>
</tr>
<tr>
<td>35</td>
<td>1.05</td>
<td>1.45</td>
<td>1.70</td>
</tr>
<tr>
<td>40</td>
<td>1.09</td>
<td>1.49</td>
<td>1.74</td>
</tr>
<tr>
<td>45</td>
<td>1.12</td>
<td>1.53</td>
<td>1.78</td>
</tr>
<tr>
<td>50</td>
<td>1.16</td>
<td>1.56</td>
<td>1.81</td>
</tr>
<tr>
<td>55</td>
<td>1.19</td>
<td>1.59</td>
<td>1.84</td>
</tr>
<tr>
<td>60</td>
<td>1.22</td>
<td>1.62</td>
<td>1.97</td>
</tr>
</tbody>
</table>
Gable and Flat Roofs $\theta \leq 7^\circ$

Gable Roofs $7^\circ < \theta \leq 45^\circ$
For SI: 1 foot = 304.8 mm, 1 degree = 0.0175 rad.

Note: $a = 4$ feet in all cases.

FIGURE R301.2(7)
COMPONENT AND CLADDING PRESSURE ZONES

FIGURE R301.2(7)
COMPONENT AND CLADDING PRESSURE ZONES

(Delete Figure R301.2(7))
TABLE R301.2(4)
NOMINAL (ASD) GARAGE DOOR WIND LOADS FOR A BUILDING WITH A MEAN ROOF HEIGHT OF 30 FEET LOCATED IN EXPOSURE B (PSF)1,2,3,4,5

<table>
<thead>
<tr>
<th>Door Size</th>
<th>ULTIMATE DESIGN WIND SPEED (V_{ult}) DETERMINED IN ACCORDANCE WITH SECTION R301.2.1 (MPH-3 SECOND GUST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (ft)</td>
<td>Height (ft)</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm, 1 mile per hour = 1.609 km/h, 1 psf = 47.88 N/m\(^2\).

1. For door sizes or wind speeds between those given above the load may be interpolated, otherwise use the load associated with the lower door size.
2. Table values shall be adjusted for height and exposure by multiplying by the adjustment coefficient in Table R301.2(3). Minimum positive wind load shall be 10 PSF and minimum negative wind load shall be 10 PSF.
3. Plus and minus signs signify pressures acting toward and away from the building surfaces.
4. Negative pressures assume door has 2 feet of width in building’s end zone.
5. Table values include the 0.6 load reduction factor.

R301.2.1.2 Protection of openings. Exterior glazed openings in buildings located in windborne debris regions shall be protected from windborne debris. Glazed opening protection for windborne debris shall meet the requirements of the Large Missile Test of ASTM E1996 and ASTM E1886 as modified in Section 301.2.1.2.1, TAS 201, 202 and 203, or AAMA 506, as applicable. Garage door glazed opening protection for windborne debris shall meet the requirements of an approved impact-resisting standard or ANSI/DASMA 115.

1. Opening in sunrooms, balconies or enclosed porches constructed under existing roofs or decks are not required to be protected provided the spaces are separated from the building interior by a wall and all openings in the separating wall are protected in accordance with this section. Such space shall be permitted to be designed as either partially enclosed or enclosed structures.
2. Storage sheds that are not designed for human habitation and that have a floor area of 720 square feet (67 m\(^2\)) or less are not required to comply with the mandatory wind-borne debris impact standard of this code.

Exception: Plywood Wood structural panels with a minimum thickness of 19/32-inch (15 mm) 7/16 inch (11.1 mm) and maximum span between lines of fasteners of 44 inches (1118 mm) shall be permitted for opening protection in one-story Group R-3 or R-4 occupancy buildings with a mean roof height of 33 feet (10 058 mm) or less where V_{ult} is 180 mph (80 m/s) or less. Panels shall be precut to overlap the wall such that they extend a minimum of 2 inches (50.8 mm) beyond the lines of fasteners and are attached to the framing surrounding the opening containing the product with the glazed opening. Panels shall be predrilled as required for the attachment method and secured with corrosion-resistant attachment hardware permanently installed on the building.
a. Attachments shall be designed to resist the components and cladding loads determined in accordance with the provisions of ASCE 7, with corrosion-resistant attachment hardware provided and anchors permanently installed on the building.

b. As an alternative, panels shall be fastened at 16 inches (406.4 mm) on center along the edges of the opposing long sides of the panel.

i. For wood frame construction, fasteners shall be located on the wall such that they are embedded into the wall framing members, nominally a minimum of 1 inch (25.4 mm) from the edge of the opening and 2 inches (50.8 mm) inward from the panel edge. Permanently installed anchors used for buildings with wood frame wall construction shall have the threaded portion that will be embedded into the wall framing based on 1/4-inch (6.35 mm) lag screws and shall be long enough to penetrate through the exterior wall covering with sufficient embedment length to provide an allowable minimum 300 pounds ASD design withdrawal capacity.

ii. For concrete or masonry wall construction, fasteners shall be located on the wall a minimum of 11/2 inches (37.9 mm) from the edge of the opening and 2 inches (50.8 mm) inward from the panel edge. Permanently installed anchors in concrete or masonry wall construction shall have an allowable minimum 300 pounds ASD design withdrawal capacity and an allowable minimum 525 pounds ASD design shear capacity with a 1 ½ inch edge distance. Hex nuts, washered wing-nuts, or bolts used to attach the wood structural panels to the anchors shall be minimum ¼-inch (6.4 mm) hardware and shall be installed with or have integral washers with a minimum 1-inch (25 mm) outside diameter.

iii. Vibration-resistant alternative attachments designed to resist the component and cladding loads determined in accordance with provisions of ASCE 7 shall be permitted.

CHAPTER 6
WALL CONSTRUCTION
Revise the following sections to read as follows:

R601.2.1 Wall sheathing. Wall sheathing shall be tightly fitted, diagonally placed boards with a minimum thickness of 5/8 inch or plywood with a minimum thickness of 19/32 inch.

R609.3 Testing and labeling. Exterior windows and sliding doors shall be tested by an approved independent laboratory, and bear a label identifying manufacturer, performance characteristics and approved inspection agency to indicate compliance with AAMA/WDMA/CSA 101/I.S.2/A440 or TAS 202 (HVHZ shall comply with TAS 202 and ASTM E1300). Exterior windows shall be compressed seal types such as awnings, casements, or fixed assemblies. Exterior side-hinged doors shall be tested and labeled as conforming to AAMA/WDMA/CSA 101/I.S.2/A440 or ANSI/WMA 100, or comply with Section R609.5. Exterior windows and doors shall be labeled with a permanent label, marking, or etching providing traceability to the manufacturer and product. The following shall also be required either on a permanent label or on a temporary supplemental label applied by the manufacturer: information identifying the manufacturer, the product model/series number, positive and negative design pressure rating, product maximum size tested, impact-resistance rating if applicable, Florida product approval number or Miami-Dade product approval number, applicable test standard(s), performance grade and approved product certification agency, testing laboratory, evaluation entity or Miami-Dade product approval. The product performance grade shall match the positive design pressure rating.
The labels are limited to one design pressure rating per reference standard. The temporary supplemental label shall remain on the window or door until final approval by the building official.

Exceptions: (no change to exceptions)

R609.5 Other exterior window and door assemblies. Exterior windows and door assemblies not included within the scope of Section R609.3 or R609.4 shall be tested in accordance with ASTM E330. Each assembly shall be tested for 10 seconds at a load equal to 1.5 times the design pressure. Exterior wind and door assemblies shall also be tested in accordance with ASTM E547 for water penetration resistance. The minimum water penetration resistance test pressure shall be 20% of the positive design wind pressure rating. Glass in assemblies covered by this exception shall comply with Section R308.5.

CHAPTER 7
WALL COVERING

Revise the following sections to read as follows:

R703.1.1 Water resistance. The exterior wall envelope shall be designed and constructed in a manner that prevents the accumulation of water within the wall assembly by providing a water-resistant barrier behind the exterior veneer as required by Section R703.2 and a means of draining to the exterior water that enters the assembly. Protection against condensation in the exterior wall assembly shall be provided in accordance with Section R702.7 of this code.

Exceptions:

1. A weather-resistant exterior wall envelope shall not be required over concrete or masonry walls designed in accordance with Chapter 6 and flashed in accordance with Section R703.4 or R703.8.

(renumber remaining exceptions)

R703.1.2.1 Wind resistance of soffits. Soffits and their attachments shall comply with Section R704 be capable of resisting wind loads specified in Tables R301.2(2) and R301.2(3) for walls using an effective wind area of 10 square feet.

R703.7.3 Water-resistant barriers. Water-resistant barriers shall be installed as required in Section R703.2 and, where applied over wood-based sheathing, shall include a water-resistant vapor-permeable barrier with a performance at least equivalent to two layers of Grade D paper. The individual layers shall be installed independently such that each layer provides a separate continuous plane and any flashing (installed in accordance with Section R703.4) intended to drain to the water-resistant barrier is directed between the layers. A minimum 3/16-inch (4.8 mm) ventilated drainage space shall be required between the two layers.

Exception: A ventilated drainage space having a minimum drainage efficiency of 90% as measured in accordance with ASTM E2273 or Annex A2 of ASTM E2925 shall be permitted in lieu of a clear air space. Where the water-resistant barrier that is applied over wood-based sheathing has a water resistance equal to or greater than that of a water-resistant barrier complying with ASTM E2556, Type II and is separated from the stucco by an intervening, substantially nonwatery-absorbing layer or drainage space.
TABLE R703.8.4
TIE ATTACHMENT AND AIRSPACE REQUIREMENTS

<table>
<thead>
<tr>
<th>BACKING AND TIE</th>
<th>MINIMUM TIE</th>
<th>MINIMUM FASTENER<sup>a</sup></th>
<th>AIRSPACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood stud backing with corrugated sheet metal</td>
<td>22 U.S. gage (0.0299 in.) × 7/8 in. wide</td>
<td>8d common nail<sup>b</sup> (2 ½ in. × 0.131 in.) RSRS-03 (2½” x 0.131 ring shank nail) complying with ASTM F1667<sup>b</sup></td>
<td>Nominal 1 in. between sheathing and veneer</td>
</tr>
<tr>
<td>Wood stud backing with metal strand wire</td>
<td>W1.7 (No. 9 U.S. gage; 0.148 in.) with hook embedded in mortar joint</td>
<td>8d common nail<sup>b</sup> (2 ½ in. × 0.131 in.) RSRS-03 (2½” x 0.131 ring shank nail) complying with ASTM F1667<sup>b</sup></td>
<td>Minimum nominal 1 in. between sheathing and veneer</td>
</tr>
<tr>
<td>Cold-formed steel stud backing with adjustable metal strand wire</td>
<td>W1.7 (No. 9 U.S. gage; 0.148 in.) with hook embedded in mortar joint</td>
<td>No. 10 screw extending through the steel framing a minimum of three exposed threads</td>
<td>Minimum nominal 1 in. between sheathing and veneer</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

^a In Seismic Design Category D0, D1 or D2, the minimum tie fastener shall be an 8d ring-shank nail (2 ½ in. × 0.131 in.) or a No. 10 screw extending through the steel framing a minimum of three exposed threads.

^b All fasteners shall have rust-inhibitive coating suitable for the installation in which they are being used, or be manufactured from material not susceptible to corrosion.

R703.8.4.1 Size and spacing. Veneer ties, if strand wire, shall be not less in thickness than No. 9 U.S. gage [(0.148 inch) (4 mm)] wire and shall have a hook embedded in the mortar joint, or if sheet metal, shall be not less than No. 22 U.S. gage [(0.0299 inch) (0.76 mm)] 7/8 inch (22 mm) corrugated. Each tie shall support not more than 1.33 2.67 square feet (0.12 0.25 m²) of wall area and shall be spaced not more than 16 32 inches (406 813 mm) on center horizontally and 11 24 inches (279 635 mm) on center vertically.

Exceptions:
1. In Seismic Design Category D0, D1 or D2 or townhouses in Seismic Design Category C or in wind areas of more than 30 pounds per square foot pressure (1.44 kPa), each tie shall support not more than 2 square feet (0.2 m²) of wall area.
2. Where the ultimate design wind speed, \(V_{\text{ult}}\) exceeds 140 mph, each tie shall support not more than 1.8 square feet (0.167 m²) of wall area and anchors shall be spaced at a maximum 18 inches (457 mm) horizontally and vertically.

R703.10 Fiber cement siding.
R703.10.1 Panel siding. Fiber-cement panels shall comply with the requirements of ASTM C1186, Type A, minimum Grade II or ISO 8336, Category A, minimum Class 2 and the attachment shall meet the design wind pressures specified in Table R301.2(2) and Table R301.2(3) for walls using an effective wind area of 10 square feet. Panels shall be installed with the long dimension either parallel or perpendicular to framing. Vertical and horizontal joints shall occur over framing members and shall be protected with caulking, or with battens or flashing, or be vertical or horizontal shiplap, or otherwise designed to
comply with Section R703.1. Where design wind pressures in Table R301.2(2) and Table R301.2(3) do not exceed 30 psf, panel siding shall be installed with fasteners in accordance with Table R703.3(1) or the approved manufacturer’s instructions.

R703.10.2 Lap siding. Fiber-cement lap siding having a maximum width of 12 inches (305 mm) shall comply with the requirements of ASTM C1186, Type A, minimum Grade II or ISO 8336, Category A, minimum Class 2. Lap siding shall be lapped a minimum of 11/4 inches (32 mm) and lap siding not having tongue-and-groove end joints shall have the ends protected with caulking, covered with an H-section joint cover, located over a strip of flashing, or shall be designed to comply with Section R703.1. Lap siding courses shall be installed with the fastener heads exposed (face-nailed) or concealed in accordance with Table R703.3(1) or approved manufacturer’s instructions.

R703.11 Vinyl siding. Vinyl siding shall be certified and labeled as conforming to the requirements of ASTM D3679 by an approved quality control agency. Vinyl siding shall have an approved design wind pressure rating based on ASTM D3679 Annex 1 that meets or exceeds the design wind pressures determined in accordance with Table R301.2(2) and Table R301.2(3) multiplied by 2.22. Vinyl siding shall be installed over wood structural panel sheathing.

R703.11.4 Vinyl soffit panels. Soffit panels shall be individually fastened to a supporting component such as a nailing strip, fascia or subfascia component or as specified by the manufacturer’s instructions.

R703.18 Drained wall assembly over mass wall assembly. Where wood frame or other types of drained wall assemblies are constructed above mass wall assemblies, flashing or other approved drainage system shall be installed as required by Section R703.4.

SECTION R704
SOFFITS

R704.1 Wind and wind-driven rain resistance of soffits.

R704.1.1 Wind resistance of soffits. Soffits and their attachments shall be capable of resisting wind loads specified in Tables R301.2(2) and R301.2(3) for walls using an effective wind area of 10 square feet.

R704.1.2 Wind-driven rain resistance of soffits. All ventilated soffit panels shall be tested for wind-driven rain resistance in accordance with TAS 100(A).

R704.2 Soffit installation. Soffit installation shall comply with Section R704.2.1, Section R704.2.2, Section R704.2.3, Section R704.2.4.

R704.2.1 Vinyl soffit panels. Vinyl soffit panels shall be installed using fasteners specified by the manufacturer and shall be fastened at both ends to a supporting component such as a nailing strip, fascia or subfascia component in accordance with Figure R704.2.1. Where the unsupported span of soffit panels is greater than 12 inches, intermediate nailing strips shall be provided in accordance with Figure R704.2.2 unless a larger span is permitted in accordance with the manufacturer’s product approval specification. Vinyl soffit panels shall be installed in accordance with the manufacturer’s product approval specification and limitations of use. Fascia covers shall be installed in accordance with the manufacturer’s product approval specification and limitations of use.
FIGURE R704.2.1
TYPICAL SINGLE SPAN VINYL SOFFIT PANEL SUPPORT

FASCIA COVER INSTALLED IN ACCORDANCE WITH FASCIA MANUFACTURER’S PRODUCT APPROVAL. SPECIFICATION AND LIMITATIONS OF USE.

ATTACH SOFFIT TO FASCIA OR TO NAILING STRIP (NOT SHOWN)

VINYL SOFFIT

J-CHANNEL

UNSUPPORTED SPAN LIMITED PER SECTION 704.2.1

FRAMING

MIN. 1X2 NAILING STRIP
FIGURE R704.2.2
TYPICAL MULTI-SPAN VINYL SOFFIT PANEL SUPPORT

R704.2.2 Fiber-cement soffit panels. Fiber-cement soffit panels shall be a minimum of 1/4 inch thick and shall comply with the requirements of ASTM C1186, Type A, minimum Grade II or ISO 8336, Category A, minimum Class 2. Panel joints shall occur over framing or over wood structural panel sheathing. Soffit panels shall be installed with spans and fasteners in accordance with the manufacturer’s product approval specification and limitations of use.

R704.2.3 Hardboard soffit panels. Where the design wind pressure is 30 psf or less, soffit panels shall be a minimum of 7/16 inch in thickness and shall be fastened to framing or nailing strips with 2 ½” x 0.113” siding nails spaced not more than 6 inches on center at panel edges and 12 inches on center at intermediate supports. Where the design wind pressure is greater than 30 psf, hardboard soffit panels shall be installed in accordance with the manufacturer’s product approval specification and limitations of use.

R704.2.4 Wood structural panel soffit prescriptive alternative. Wood structural panel soffit panels are permitted to be installed in accordance with Table R704.2.4.

Table 704.2.4
Installation Requirements for Wood Structural Panel, Closed Soffitb,c,d,e,f
<table>
<thead>
<tr>
<th>Maximum Design Pressure (- or + psf)</th>
<th>Minimum Panel Span Rating</th>
<th>Minimum Panel Performance Category</th>
<th>Nail Type and Size (inch)</th>
<th>Fastener Spacing along Edges and Intermediate Supports (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>24/0</td>
<td>3/8</td>
<td>6d box (2 x 0.099 x 0.266 head diameter)</td>
<td>Galvanized Steel 4</td>
</tr>
<tr>
<td>40</td>
<td>24/0</td>
<td>3/8</td>
<td>6d box (2 x 0.099 x 0.266 head diameter)</td>
<td>Stainless Steel 4</td>
</tr>
<tr>
<td>50</td>
<td>24/0</td>
<td>3/8</td>
<td>6d box (2 x 0.099 x 0.266 head diameter)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8d common (2½ x 0.131 x 0.281 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>24/0</td>
<td>3/8</td>
<td>6d box (2 x 0.099 x 0.266 head diameter)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8d common (2½ x 0.131 x 0.281 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>70</td>
<td>24/16</td>
<td>7/16</td>
<td>8d common (2½ x 0.131 x 0.281 head diameter)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10d box (3 x 0.128 x 0.312 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>80</td>
<td>24/16</td>
<td>7/16</td>
<td>8d common (2½ x 0.131 x 0.281 head diameter)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10d box (3 x 0.128 x 0.312 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>90</td>
<td>32/16</td>
<td>15/32</td>
<td>8d common (2½ x 0.131 x 0.281 head diameter)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10d common (3 x 0.148 x 0.312 head diameter)</td>
<td>6</td>
</tr>
</tbody>
</table>

a. Fasteners shall comply with Sections R703.3.2 and R703.3.3.
b. Maximum spacing of soffit framing members shall not exceed 24 inches.
c. Wood structural panels shall be of an exterior exposure grade.
d. Wood structural panels shall be installed with strength axis perpendicular to supports with a minimum of two continuous spans.
e. Wood structural panels shall be attached to soffit framing members with specific gravity of at least 0.42. Framing members shall be minimum 2x3 nominal with the larger dimension in the cross section aligning with the length of fasteners to provide sufficient embedment depths.
f. Spacing at intermediate supports is permitted to be 12 inches on center.

CHAPTER 8
ROOF-CEILING CONSTRUCTION
Revise the following sections to read as follows:

R803.2 Wood structural panel Plywood roof sheathing.
R803.2.1 Identification and grade. Wood structural panels used as roof sheathing shall be plywood and shall conform to DOC PS 1, DOC PS 2, CSA O437 or CSA O325, and shall be identified for grade, bond classification and performance category by a grade mark or certificate of inspection issued by an approved agency. Wood structural panels Plywood roof sheathing shall comply with the grades specified in Table R503.2.1.1(1).
R803.2.2 Allowable spans. The minimum thickness and span rating maximum allowable spans for wood structural panel plywood roof sheathing shall not exceed the values set forth in Table R803.2.2 R503.2.1.1(1), or APA E30.

R803.2.3 Installation. Wood structural panel Plywood used as roof sheathing shall be installed with joints staggered in accordance with Section R803.2.3.1 for wood roof framing or with Table R804.3 for cold-formed steel roof framing. Plywood roof sheathing shall not cantilever more than 9 inches beyond the gable end wall unless supported by gable overhang framing.

R803.2.3.1 Sheathing fastenings. Wood structural panel Plywood sheathing shall be fastened to roof framing in accordance with Table R803.2.3.1 with RSRS-01 (2 3/8" x 0.113") nails. Sheathing shall be fastened with ASTM F1667 RSRS-03 (2 ½" x 0.131") nails or ASTM F1667 RSRS-04 (3" x 0.120") nails, at 6 inches (152 mm) on center at edges and 6 inches (152 mm) on center at intermediate framing, unless roof diaphragm design requires a closer spacing. RSRS-01 RSRS-03, and RSRS-04 are ring shank roof sheathing nails meeting the specifications in ASTM F1667.

Exceptions:
1. Where roof framing with a specific gravity, 0.42 ≤ G ≤ 0.49 is used, spacing of ring-shank fasteners shall be 4 inches on center in nailing zone 3 in accordance with Figure R803.2.3.1 where Vult is 165 mph or greater.

2. Where roof framing with a specific gravity, G = 0.49 is used, spacing of ring-shank fasteners shall be permitted at 12 inches (305 mm) on center at intermediate framing in nailing zone 1 for any Vult and in nailing zone 2 for Vult less than or equal to 140 mph in accordance with Figure R803.2.3.1.
3. Where roof framing with a specific gravity, G = 0.49 is used, 8d common or 8d hot-dipped galvanized box nails at 6 inches (152 mm) on center at edges and 6 inches (152 mm) on center at intermediate framing shall be permitted for Vult less than or equal to 130 mph in accordance with Figure R803.2.3.1.

FIGURE R803.2.3.1
ROOF-SHEATHING NAILING-ZONES

(Delete Figure R803.2.1)

Table R803.2.2
Minimum Plywood Roof Sheathing Thickness

<table>
<thead>
<tr>
<th>Rafter/Truss Spacing</th>
<th>Wind Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 in. o.c.</td>
<td>115 mph</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Sheathing Thickness, inches (Panel Span Rating) Exposure B</td>
<td>19/32 (40/20)</td>
</tr>
<tr>
<td>Minimum Sheathing Thickness, inches (Panel Span Rating) Exposure C</td>
<td>19/32 (40/20)</td>
</tr>
<tr>
<td>Minimum Sheathing Thickness, inches (Panel Span Rating) Exposure D</td>
<td>19/32 (40/20)</td>
</tr>
</tbody>
</table>

Table R803.2.1
Plywood Roof Sheathing Attachment

<table>
<thead>
<tr>
<th>Roof Sheathing Attachment</th>
<th>Wind Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>115 mph</td>
</tr>
<tr>
<td></td>
<td>E</td>
</tr>
<tr>
<td>Rafter/Truss SG = 0.42</td>
<td>6</td>
</tr>
<tr>
<td>Rafter/Truss SG = 0.49</td>
<td>6</td>
</tr>
<tr>
<td>Rafter/Truss SG = 0.42</td>
<td>6</td>
</tr>
<tr>
<td>Rafter/Truss SG = 0.49</td>
<td>6</td>
</tr>
<tr>
<td>Rafter/Truss SG = 0.42</td>
<td>6</td>
</tr>
<tr>
<td>Rafter/Truss SG = 0.49</td>
<td>6</td>
</tr>
<tr>
<td>Rafter/Truss SG = 0.49</td>
<td>6</td>
</tr>
</tbody>
</table>

E = Nail spacing along panel edges (inches)
F = Nail spacing along intermediate supports in the panel field (inches)

a. For sheathing located a minimum of 4 feet from the perimeter edge of the roof, including 4 feet on each side of ridges and hips, nail spacing is permitted to be 6 inches on center along panel edges and 6 inches on center along intermediate supports in the panel field.
b. Where rafter/truss spacing is less than 24 inches on center, roof sheathing fastening is permitted to be in accordance with the AWC WFCM or the AWC NDS.

CHAPTER 9
ROOF ASSEMBLIES
Revise the following sections to read as follows:

R903.4.3 Wind resistance of gutters. Gutters shall be designed, constructed and installed to resist wind loads in accordance with Section R301.2.1 and shall be tested in accordance with Test Methods G-1 and G-2 of ANSI/SPRI GT-1.

R904.6 Ridge vents of metal, plastic or composition material. All ridge and off-ridge vents shall be installed in accordance with the manufacturer’s installation instructions and be capable of resisting the wind loads specified in Section R301.2.1. Ridge and off-ridge vents shall also be tested in accordance with TAS 100(A) for wind driven water infiltration. All ridge and off-ridge vents shall be limited by the roof mean height as tested in accordance with TAS 100(A), and shall be listed in the system manufacturer’s product approval.

R905.1.1 Underlayment. Unless otherwise noted, underlayment for asphalt shingles, metal roof shingles, mineral surfaced roll roofing, slate and slate-type shingles, wood shingles, wood shakes and metal roof panels for roof slopes 2:12 and greater shall conform to the applicable standards listed in this chapter. Underlayment materials required to comply with ASTM D226, D1970, D4869 and D6757 shall bear a label indicating compliance to the standard designation and, if applicable, type classification indicated in Table R905.1.1. Underlayment for roof slopes 2:12 and greater shall be applied and attached in accordance with Section R905.1.1.1, R905.1.1.2, or R905.1.1.3 as applicable Table R905.1.1.

R905.1.1.1 Underlayment for asphalt, metal, mineral surfaced, slate and slate-type roof coverings. Underlayment for asphalt shingles, metal roof shingles, mineral surfaced roll roofing, slate and slate-type shingles, wood shingles, wood shakes and metal roof panels shall comply with one of the following methods:

1. The entire roof deck shall be covered with an approved self-adhering polymer modified bitumen underlayment complying with ASTM D1970 installed in accordance with both the underlayment manufacturer’s and roof covering manufacturer’s installation instructions for the deck material, roof ventilation configuration and climate exposure for the roof covering to be installed.

2. A minimum 4-inch-wide (102 mm) strip of self-adhering polymer-modified bitumen membrane
complying with ASTM D1970, installed in accordance with the manufacturer’s instructions for the
deck material, shall be applied over all joints in the roof decking. An approved underlayment in
accordance with Table R905.1.1.1 for the applicable roof covering shall be applied over the entire
roof over the 4-inch- wide (102 mm) membrane strips.

Exception: A reinforced synthetic underlayment that is approved as an alternate to
underlayment complying with ASTM D226 Type II and having a minimum tear strength of 15 lbf
in accordance with ASTM D1970 or ASTM D4533 of 20 pounds and a minimum tensile strength
of 20 lbf/inch in accordance with ASTM D5035 shall be permitted to be applied over the entire
roof over the 4-inch wide (102 mm) membrane strips. This underlayment shall be installed and
attached in accordance with the underlayment attachment methods of Table R905.1.1.1 for the
applicable roof covering and slope and the underlayment manufacturer’s installation instructions,
except metal cap nails shall be required where the ultimate design wind speed, \(V_{\text{ult}} \), equals or exceeds 150 mph.

3. A minimum 3 ¾-inch wide (96 mm) strip of self-adhering flexible flashing tape complying with
AAMA 711-13, Level 3 (for exposure up to 176° F (80° C)), installed in accordance with the
manufacturer’s instructions for the deck material, shall be applied over all joints in the roof decking.
An approved underlayment in accordance with Table R905.1.1.1 for the applicable roof covering shall
be applied over the entire roof over the 4-inch-wide (102 mm) flashing strips.

Exception: A reinforced synthetic underlayment that is approved as an alternate to
underlayment complying with ASTM D226 Type II and having a minimum tear strength of 15 lbf
in accordance with ASTM D4533 and a minimum tensile strength of 20 lbf/inch in accordance with ASTM D5035 shall be permitted to be applied over the entire roof over the 4-inch wide (102 mm) membrane strips. This underlayment shall be installed and attached in accordance with the underlayment attachment methods of Table R905.1.1.1 for the applicable roof covering and slope and the underlayment manufacturer’s installation instructions.

4. Two layers of ASTM D226 Type II or ASTM D4869 Type III or Type IV underlayment shall be
installed as follows: Apply a 19-inch (483 mm) strip of underlayment felt parallel to and starting at
the eaves, fastened sufficiently to hold in place. Starting at the eave, apply 36- inch wide (914 mm)
sheets of underlayment, overlapping successive sheets 19 inches (483 mm), end laps shall be 6
inches and shall be offset by 6 feet. The underlayment shall be attached to a nailable deck with
corrosion-resistant fasteners with one row centered in the field of the sheet with a maximum
fastener spacing of 12 inches (305 mm) o.c., and one row at the end and side laps fastened 6 inches
(152 mm) o.c. Underlayment shall be attached using annular ring or deformed shank nails with
metal or plastic caps with a nominal cap diameter of not less than 1 inch. Metal caps are required
where the ultimate design wind speed, \(V_{\text{ult}} \), equals or exceeds 170 mph. Metal caps shall have a
thickness of not less than 32-gage sheet metal. Power-driven metal caps shall have a minimum
thickness of 0.010 inch. Minimum thickness of the outside edge of plastic caps shall be 0.035 inch.
The cap nail shank shall be not less than 0.083 inch for ring shank cap nails. Cap nail shank shall
have a length sufficient to penetrate through the roof sheathing or not less than 3/4 inch into the
roof sheathing.

5. Two layers of a reinforced synthetic underlayment that has a Product Approval as an alternate to
underlayment complying with ASTM D226 Type II shall be permitted to be used. Synthetic
underlayment shall have a minimum tear strength of 15 lbf in accordance with ASTM D4533, a minimum tensile strength of 20 lbf/inch in accordance with ASTM D5035, and shall meet the liquid water transmission test of Section 8.6 of ASTM D4869. Synthetic underlayment shall be installed as follows: Apply a strip of synthetic underlayment that is half the width of a full sheet parallel to and starting at the eaves, fastened sufficiently to hold in place. Starting at the eave, apply full sheets of reinforced synthetic underlayment, overlapping successive sheets half the width of a full sheet plus the width of the manufacturers single ply overlap. End laps shall be 6 inches and shall be offset by 6 feet. Synthetic underlayment shall be attached to a nailable deck with corrosion-resistant fasteners with a maximum fastener spacing measured horizontally and vertically of 12 inches (305 mm) o.c. between side laps, and one row at the end and side laps fastened 6 inches (152 mm) o.c. Synthetic underlayment shall be attached using annular ring or deformed shank nails with metal or plastic caps with a nominal cap diameter of not less than 1 inch. Metal caps are required where the ultimate design wind speed, V_{ult}, equals or exceeds 170 mph. Metal caps shall have a thickness of not less than 32-gage sheet metal. Power-driven metal caps shall have a minimum thickness of 0.010 inch. Minimum thickness of the outside edge of plastic caps shall be 0.035 inch. The cap nail shank shall be not less than 0.083 inch for ring shank cap nails. Cap nail shank shall have a length sufficient to penetrate through the roof sheathing or not less than 3/4 inch into the roof sheathing.

Exception: Compliance with Section R905.1.1.1 is not required for structural metal panels that do not require a substrate or underlayment.

TABLE R905.1.1.1
UNDERLAYMENT WITH SELF-ADHERING STRIPS OVER ROOF DECKING JOINTS

<table>
<thead>
<tr>
<th>Roof Covering</th>
<th>Underlayment Type</th>
<th>Underlayment Attachment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Shingles, Metal Roof Panels, Photovoltaic Shingles</td>
<td>ASTM D226 Type II, ASTM D4869 Type III or IV, ASTM D 6757</td>
<td>2:12 ≤ Roof Slope < 4:12 or Section R905.1.1.1 Item 4, or Section R905.1.1.3 Item 3 as applicable to the type of roof covering.</td>
</tr>
<tr>
<td>Metal Roof Shingles, Mineral-Surface Roll Roofing, Slate and Slate-type Shingles, Wood Shingles, Wood Shakes</td>
<td>ASTM D226 Type II, ASTM D4869 Type III or IV</td>
<td>Roof Slope ≥ 4:12 or Section R905.1.1.1 Item 4, or Section R905.1.1.3 Item 3 as applicable to the type of roof covering.</td>
</tr>
</tbody>
</table>

TABLE R905.1.1
UNDERLAYMENT TABLE
R905.1.1.2 Underlayment for concrete and clay tile. Underlayment for concrete and clay tile shall comply with one of the following methods:

1. The entire roof deck shall be covered with an approved self-adhering polymer modified bitumen underlayment complying with ASTM D1970 installed in accordance with both the underlayment manufacturer’s and roof covering manufacturer’s installation instructions for the deck material, roof ventilation configuration and climate exposure for the roof covering to be installed.

2. A minimum 4-inch-wide (102 mm) strip of self-adhering polymer-modified bitumen membrane complying with ASTM D1970 installed in accordance with the manufacturer’s instructions for the deck material, shall be applied over all joints in the roof decking. An underlayment complying with Section R905.3.3 shall be applied over the entire roof over the 4-inch-wide (102 mm) membrane strips.

3. A minimum 3 ¾-inch wide (96 mm) strip of self-adhering flexible flashing tape complying with AAMA 711-13, Level 3 (for exposure up to 176° F (80° C), installed in accordance with the manufacturer’s instructions for the deck material, shall be applied over all joints in the roof decking. An underlayment complying with Section R905.3.3 shall be applied over the entire roof over the 4-inch-wide (102 mm) flashing strips.

4. Two layers of ASTM D226 Type II or ASTM D4869 Type III or Type IV underlayment shall be installed as follows: Apply a 19-inch (483 mm) strip of underlayment felt parallel to and starting at the eaves, fastened sufficiently to hold in place. Starting at the eave, apply 36-inchwide (914 mm) sheets of underlayment, overlapping successive sheets 19 inches (483 mm), end laps shall be 6 inches and shall be offset by 6 feet. The underlayment shall be attached to a nailable deck with corrosion-resistant fasteners with one row centered in the field of the sheet with a maximum fastener spacing of 12 inches (305 mm) o.c., and one row at the end and side laps fastened 6 inches (152 mm) o.c. Underlayment shall be attached using annular ring or deformed shank nails with metal or plastic caps with a nominal cap diameter of not less than 1 inch. Metal caps are required where the ultimate design wind speed, V_{ult}, equals or exceeds 170 mph. Metal caps shall have a thickness of not less than 32-gage sheet metal. Power-driven metal caps shall have a minimum thickness of 0.010 inch. Minimum thickness of the outside edge of plastic caps shall be 0.035 inch. The cap nail shank shall be not less than 0.083 inch for ring shank cap nails. Cap nail shank shall have a length sufficient to penetrate through the roof sheathing or not less than 3/4 inch into the roof sheathing.

Exception: Compliance with Section R905.1.1.2 is not required where a fully adhered underlayment is applied in accordance with Section R905.3.3.

R905.1.1.3 Underlayment for wood shakes and shingles. Underlayment for wood shakes and shingles shall comply with one of the following methods:

1. A minimum 4-inch-wide (102 mm) strip of self-adhering polymer-modified bitumen membrane complying with ASTM D1970, installed in accordance with the manufacturer’s instructions for the deck material, shall be applied over all joints in the roof decking. An approved underlayment in accordance with Table R905.1.1.1 for the applicable
roof covering shall be applied over the entire roof over the 4-inch-wide (102 mm) membrane strips.

2. A minimum 3 ¾-inch wide (96 mm) strip of self-adhering flexible flashing tape complying with AAMA 711-13, Level 3 (for exposure up to 176° F (80° C)), installed in accordance with the manufacturer’s instructions for the deck material, shall be applied over all joints in the roof decking. An underlayment complying with Table R905.1.1.1 for the applicable roof covering shall be applied over the entire roof over the 4-inch-wide (102 mm) flashing strips.

3. Two layers of ASTM D226 Type II or ASTM D4869 Type III or Type IV underlayment shall be installed as follows: Apply a 19-inch (483 mm) strip of underlayment felt parallel to and starting at the eaves, fastened sufficiently to hold in place. Starting at the eave, apply 36-inch-wide (914 mm) sheets of underlayment, overlapping successive sheets 19 inches (483 mm), end laps shall be 6 inches and shall be offset by 6 feet. The underlayment shall be attached to a nailable deck with corrosion-resistant fasteners with one row centered in the field of the sheet with a maximum fastener spacing of 12 inches (305 mm) o.c., and one row at the end and side laps fastened 6 inches (152 mm) o.c. Underlayment shall be attached using annular ring or deformed shank nails with metal or plastic caps with a nominal cap diameter of not less than 1 inch. Metal caps are required where the ultimate design wind speed, V_{ult}, equals or exceeds 170 mph. Metal caps shall have a thickness of not less than 32-gage sheet metal. Power-driven metal caps shall have a minimum thickness of 0.010 inch. Minimum thickness of the outside edge of plastic caps shall be 0.035 inch. The cap nail shank shall be not less than 0.083 inch for ring shank cap nails. Cap nail shank shall have a length sufficient to penetrate through the roof sheathing or not less than 3/4 inch into the roof sheathing.

R905.2.6.1 Classification of asphalt shingles. Asphalt shingles shall be classified in accordance with ASTM D3161, TAS 107 or ASTM D7158 as Class H to resist the basic wind speed per Figure R301.2(4). Shingles classified as ASTM D3161 Class D or classified as ASTM D7158 Class G are acceptable for use where $V_{w} = 100$ mph. Shingles classified as ASTM D3161 Class F, TAS 107 or ASTM D7158 Class H are acceptable for use for all wind speeds. Asphalt shingle wrappers shall indicate compliance with ASTM D7158 Class H one of the required classifications, as shown in Table R905.2.6.1.

<table>
<thead>
<tr>
<th>TABLE R905.2.6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASSIFICATION OF ASPHALT SHINGLES</td>
</tr>
</tbody>
</table>

(Delete Table R905.2.6.1)

R905.2.6.2 Asphalt shingle installation at eaves. Asphalt shingle starter strips at eaves shall comply with one of the following:

1. Set starter strips in a minimum 8-in.-wide strip of compatible roofing cement. The maximum thickness of roofing cement shall be ⅛ in. Starter strips shall also be fastened parallel to the eaves along a line above the eave line according to the manufacturer’s specifications. Fasteners shall be positioned so they will not be exposed under the cutouts in the first course. Starter strips and shingles must not extend more than ¾ in. beyond the drip edge.

2. A self-adhering starter strip complying with the manufacturer’s instructions with asphalt adhesive strips at the eave. The starter strip shall be installed so that starter strip adheres to and covers the drip edge top surface.
R905.2.6.3 Asphalt shingle installation at gable rakes. Asphalt shingles at gable rakes shall comply with one of the following:

1. Shingles at gable rakes shall be set in a minimum 8-in.-wide strip of compatible roofing cement. The maximum thickness of roofing cement shall be $\frac{1}{8}$ in. Shingles at gable rakes shall also be fastened in accordance with the manufacturer’s specifications.

2. Set starter strips at gable rakes in a minimum 8-in.-wide strip of compatible roofing cement. The maximum thickness of roofing cement shall be $\frac{1}{8}$ in. Starter strips shall be fastened parallel to the gable rake according to the manufacturer’s specifications. Fasteners shall be positioned so they will not be exposed under the cutouts in the first course. Starter strips and shingles must not extend more than $\frac{1}{4}$ in. beyond the drip edge.

3. A self-adhering starter strip complying with the manufacturer’s instructions with asphalt adhesive strips at the gable rake. The starter strip shall be installed so that starter strip adheres to and covers the drip edge top surface.

R905.2.8.5 Drip edge. Provide drip edge at eaves and gables of shingle roofs. Overlap to be a minimum of 3 inches (76 mm). Eave drip edges shall extend 1/2 inch (13 mm) below sheathing and extend back on the roof a minimum of 2 inches (51 mm). Drip edge at eaves shall be permitted to be installed either over or under the underlayment. If installed over the underlayment, there shall be a minimum 4 inch (51 mm) width of roof cement shall be installed over the drip edge flange. Drip edge shall be mechanically fastened a maximum of 4 inches (102 mm) on center with ring shank nails. Fasteners shall be placed in an alternating (staggered) pattern along the length of the drip edge with adjacent fasteners placed near opposite edges of the leg/flange of drip edge on the roof. Where the V_{asd} as determined in accordance with Section R301.2.1.3 is 110 mph (177 km/h) or greater or the mean roof height exceeds 33 feet (10 058 mm), drip edges shall be mechanically fastened a maximum of 4 inches (102 mm) on center.

R905.3 Clay and concrete tile. The installation of clay and concrete tile shall be in accordance with the manufacturer’s installation instructions, or recommendations of FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Sixth Edition where the V_{asd} is determined in accordance with Section R301.2.1.3 or the recommendations of RAS 118, 119 or 120.

Exceptions:

1. Concrete and clay tiles shall be mechanically attached or adhesive-set. Mortar attachment of concrete and clay roof tile is not permitted.
2. Hip and ridge concrete and clay tiles shall be attached to a ridge board.
3. At eaves, each tile in the first course of tiles shall be secured with a metal clip or be adhesive-set.
4. For buildings located within 3000 ft. of the coast, all metal clips, straps, and fasteners shall be stainless steel.

R905.3.2 Deck slope. Clay and concrete roof tile shall be installed on roof slopes in accordance with the recommendations of FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Fifth
Sixth Edition where the V_{asd} is determined in accordance with Section R301.2.1.3 or the recommendations of RAS 118, 119 or 120.

905.3.3 Underlayment. Required underlayment shall comply with the underlayment manufacturer’s installation instructions in accordance with the FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Fifth Sixth Edition where the V_{asd} is determined in accordance with Section R301.2.1.3 or the recommendations of RAS 118, 119 or 120.

905.3.3.1 Slope and underlayment requirements. Refer to manufacturer’s installation instructions, FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Fifth Sixth Edition where the V_{asd} is determined in accordance with Section R301.2.1.3 or RAS 118, 119 or 120 for underlayment and slope requirements for specific roof tile systems.

905.3.6 Fasteners. Nails shall be corrosion resistant and not less than 11 gage, 5/16-inch (11 mm) head, and of sufficient length to penetrate the deck not less than 3/4 inch (19 mm) or through the thickness of the deck, whichever is less or in accordance with the FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Fifth Sixth Edition where the V_{asd} is determined in accordance with Section R301.2.1.3 or in accordance with the recommendations of RAS 118, 119 or 120. Attaching wire for clay or concrete tile shall not be smaller than 0.083 inch (2.1 mm).

905.3.7 Application. Tile shall be applied in accordance with this chapter and the manufacturer’s installation instructions, recommendations of the FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Fifth Sixth Edition or the recommendations of RAS 118, 119 or 120.

905.3.7.1 Hip and ridge tiles. Hip and ridge tiles shall be installed in accordance with FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Fifth Sixth Edition where the V_{asd} is determined in accordance with Section R301.2.1.3 or the recommendations of RAS 118, 119 or 120.

905.3.8 Flashing. At the juncture of roof vertical surfaces, flashing and counter flashing shall be provided in accordance with this chapter and the manufacturer’s installation instructions, recommendations of the FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Fifth Sixth Edition where the V_{asd} is determined in accordance with Section R301.2.1.3 or the recommendations of RAS 111, 118, 119 or 120.

R905.4.4.1 Wind Resistance of Metal roof shingles. Metal roof shingles applied to a solid or closely fitted deck shall be tested in accordance with ASTM D3161, FM 4474, UL 580, UL 1897 or TAS 107. Metal roof shingles tested in accordance with ASTM D3161 shall meet the classification requirements of Table R905.2.4.1 for the appropriate maximum basic wind speed and the metal shingle packaging shall bear a label to indicate compliance with ASTM D3161 and the required classification in Table R905.4.4.1.

<table>
<thead>
<tr>
<th>MAXIMUM BASIC WIND SPEED FROM FIGURE R301.2(4) or ASCE-7 (mph)</th>
<th>V_{asd} as determined in accordance with Section R301.2.1.3 (mph)</th>
<th>ASTM D3161</th>
</tr>
</thead>
</table>

TABLE R905.4.4.1
CLASSIFICATION OF METAL ROOF SHINGLES TESTED IN ACCORDANCE WITH ASTM D3161
R905.10 Metal roof panels. The installation of metal roof panels roof systems shall comply with the provisions of this section. Metal panel roof system through fastened or standing seam shall be tested in accordance with ASTM E1592. Metal roofing panels shall be factory or field manufactured in accordance with the manufacturers’ product approval specifications and limitations of use. Metal roofing panels shall be factory or field manufactured under a quality assurance program that is audited by a third-party quality assurance entity approved by the Florida Building Commission for that purpose.

R905.17.1 Wind resistance. Rooftop mounted photovoltaic systems shall be designed for wind loads in accordance with ASCE 7 for component and cladding in accordance with Chapter 16 of the Florida Building Code, Building using an effective wind area based on the dimensions of a single unit frame.

CHAPTER 46
REFERENCE STANDARDS
Revise the following sections to read as follows:

ASCE/SEI

American Society of Civil Engineers
Structural Engineering Institute 1801
Alexander Bell Drive

7—1016 Minimum Design Loads and Associated Criteria for Buildings and Other Structures
<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Source/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update wind design to ASCE 7-16</td>
<td>7th Edition (2020) FBC</td>
</tr>
<tr>
<td>Weather protection and water resistive barriers</td>
<td>2007 and 2010 FBC</td>
</tr>
<tr>
<td></td>
<td>Rainwater Management Performance of Newly Constructed Residential Building</td>
</tr>
<tr>
<td></td>
<td>Enclosures During August and September 2004, Joseph Lstiburek</td>
</tr>
<tr>
<td></td>
<td>ICC Code Development process, code change RB246-19</td>
</tr>
<tr>
<td>Walls constructed according to the masonry and concrete chapters in the code</td>
<td>FBC HRAC recommendation</td>
</tr>
<tr>
<td>Brick veneer tie attachment and spacing</td>
<td>FEMA P-499 TFS 5.4</td>
</tr>
<tr>
<td>Face-nailing fiber cement lap siding</td>
<td>FEMA Hurricane Harvey MAT report</td>
</tr>
<tr>
<td></td>
<td>FEMA P-499 TFS 5.3</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td>Vinyl siding design wind pressure increase</td>
<td>Wind Loads on Components of Multi-Layer Wall Systems with Air-Permeable Exterior</td>
</tr>
<tr>
<td></td>
<td>Cladding, IBHS</td>
</tr>
<tr>
<td>Wind resistance of gutters</td>
<td>FEMA Hurricane Charley, Hurricane Ivan, and Hurricane Katrina MAT reports</td>
</tr>
<tr>
<td></td>
<td>ICC Code Development process, code changes S24-16 and S17-19</td>
</tr>
<tr>
<td>Metal panel roof systems tested in accordance with ASTM E1592</td>
<td>FBC HRAC recommendation</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td>Ridge vent testing for wind loads and wind-driven rain</td>
<td>FBC HVHZ</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td></td>
<td>FEMA P-499 TFS 7.5</td>
</tr>
<tr>
<td>Underlayment/Sealed roof deck</td>
<td>IBHS Fortified Roof</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td></td>
<td>FEMA P-499 TFS 7.2</td>
</tr>
<tr>
<td>Asphalt shingle classification</td>
<td>FEMA Hurricane Harvey Recovery Advisory 2</td>
</tr>
<tr>
<td></td>
<td>General enhanced construction recommendation</td>
</tr>
<tr>
<td>Asphalt shingle installation</td>
<td>IBHS Fortified Roof</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Harvey Recovery Advisory 2</td>
</tr>
<tr>
<td>Drip edge installation</td>
<td>IBHS Fortified Roof</td>
</tr>
<tr>
<td>Concrete and clay tile installation</td>
<td>FEMA P-499 TFS 7.4</td>
</tr>
<tr>
<td></td>
<td>7th Edition (2020) FBC</td>
</tr>
<tr>
<td>Metal Roof Shingles</td>
<td>7th Edition (2020) FBC</td>
</tr>
<tr>
<td>Impact protection for windows, doors, and garage doors</td>
<td>IBHS Fortified Silver</td>
</tr>
<tr>
<td></td>
<td>FBC HVHZ</td>
</tr>
<tr>
<td>Impact protection of entire envelope for Risk Category III and IV buildings</td>
<td>FBC HVHZ</td>
</tr>
<tr>
<td></td>
<td>General enhanced construction recommendation</td>
</tr>
<tr>
<td>Window and door types and testing</td>
<td>General enhanced construction recommendation</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td>Category</td>
<td>Reference</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Soffit installation and testing</td>
<td>University of Florida report to FBC - Comparison of Severe Wind-Driven Rain Test Methods for Fenestration</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Irma Recovery Advisory 2</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td></td>
<td>FBC HVHZ</td>
</tr>
<tr>
<td></td>
<td>IBHS Fortified Silver 7th Edition (2020) FBC Residential</td>
</tr>
<tr>
<td>Wall and roof sheathing thickness and type</td>
<td>FBC HVHZ</td>
</tr>
<tr>
<td>Roof sheathing attachment</td>
<td>IBHS Fortified Roof 7th Edition (2020) FBC</td>
</tr>
<tr>
<td>Water-resistive barriers (stucco)</td>
<td>2007 and 2010 FBC</td>
</tr>
<tr>
<td></td>
<td>Rainwater Management Performance of Newly Constructed Residential Building Enclosures During August and September 2004, Joseph Lstiburek</td>
</tr>
<tr>
<td></td>
<td>ICC Code Development process, code change RB246-19</td>
</tr>
</tbody>
</table>
Appendix C. Optional Enhanced Construction Techniques for Wind Design Provisions of the Florida Building Code (Stafford)

OPTIONAL ENHANCED CONSTRUCTION SUPPLEMENT
7th Edition (2020) FLORIDA BUILDING CODE, BUILDING
CHAPTER 14
EXTERIOR WALLS
Revise the following sections to read as follows:

1403.2 Weather protection. Exterior walls shall provide the building with a weather-resistant exterior wall envelope. The exterior wall envelope shall include flashing, as described in Section 1405.4. The exterior wall envelope shall be designed and constructed in such a manner as to prevent the accumulation of water within the wall assembly by providing a water resistive barrier behind the exterior veneer, as described in Section 1404.2, and a means for draining water that enters the assembly to the exterior. Protection against condensation in the exterior wall assembly shall be provided in accordance with Section 1405.3.

Exceptions:
1. A weather-resistant exterior wall envelope shall not be required over concrete or masonry walls designed in accordance with Chapters 19 and 21, respectively.

1403.9 Drained wall assembly over mass wall assembly. Where wood frame or other types of drained wall assemblies are constructed above mass wall assemblies, flashing or other approved drainage system shall be installed as required by Section 1405.4.

1403.10 Soffits. Soffits shall comply with Section 1709.10.

1404.2 Water-resistive barrier. Not fewer than one layer of No.15 asphalt felt, complying with ASTM D226 for Type 1 felt or other approved materials, shall be attached to the studs or sheathing, with flashing as described in Section 1405.4, in such a manner as to provide a continuous water-resistive barrier behind the exterior wall veneer.

1404.2.1 Where cement plaster (stucco) is to be applied to lath over frame construction, the water-resistive barrier shall comply with Section 2510.6.
1405.6 Anchored masonry veneer. Anchored masonry veneer shall comply with the provisions of Sections 1405.6, 1405.7, 1405.8 and 1405.9 and Sections 12.1 and 12.2 of TMS 402/ACI 530/ASCE 5.

1405.6.1 Tolerances. Anchored masonry veneers in accordance with Chapter 14 are not required to meet the tolerances in Article 3.3 F1 of TMS 602/ACI 530.1/ASCE 6.

1405.6.2 Tie attachment for wood frame backing. The minimum tie fastener for wood frame backing shall be an RSRS-03 (2½" x 0.131 ring shank nail) complying with ASTM F1667. The maximum vertical spacing of ties shall be 11 inches and the maximum horizontal spacing of ties shall be 16 inches. Seismic requirements. Anchored masonry veneer located in Seismic Design Category C, D, E or F shall conform to the requirements of Section 12.2.2.10 of TMS 402/ACI 530/ASCE 5.

1405.14 Vinyl siding. Vinyl siding conforming to the requirements of this section and complying with ASTM D3679 shall be permitted on exterior walls of buildings located in areas where V_{as} as determined in accordance with Section 1609.3.1 does not exceed 100 miles per hour (45 m/s) and the building height is less than or equal to 40 feet (12 192 mm) in Exposure C. Where construction is located in areas where V_{as} as determined in accordance with Section 1609.3.1 exceeds 100 miles per hour (45 m/s), or building heights are in excess of 40 feet (12 192 mm), tests or calculations indicating compliance with Chapter 16 shall be submitted. Vinyl siding shall be secured to the building so as to provide weather protection for the exterior walls of the building. Vinyl siding shall be certified and labeled as conforming to the requirements of ASTM D3679 by an approved quality control agency. Vinyl siding shall have an approved design wind pressure rating based on ASTM D3679 Annex 1 that meets or exceeds the design wind pressures determined in accordance with Section 1609 multiplied by 1.6. Vinyl siding shall be installed over wood structural panel sheathing.

1405.16 Fiber-cement siding. Fiber-cement siding complying with Section 1404.10 shall be permitted on exterior walls of Type I, II, III, IV and V construction and the attachment shall meet the design wind pressures specified in Section 1609 as specified for wind pressure resistance or wind speed exposures as indicated by the manufacturer’s listing and label and approved installation instructions. Where specified, the siding shall be installed over sheathing or materials listed in Section 2304.6 and shall be installed to conform to the water-resistant barrier requirements in Section 1403. Siding and accessories shall be installed in accordance with approved manufacturer’s instructions. Unless otherwise specified in the approved manufacturer’s instructions, nails used to fasten the siding to wood studs shall be corrosion-resistant round head smooth shank and shall be long enough to penetrate the studs at least 1 inch (25 mm). For cold-formed steel light-frame construction, corrosion-resistant fasteners shall be used. Screw fasteners shall penetrate the cold-formed steel framing at least three exposed full threads. Other fasteners shall be installed in accordance with the approved construction documents and manufacturer’s instructions.

1405.16.2 Lap siding. Fiber-cement lap siding having a maximum width of 12 inches (305 mm) shall comply with the requirements of ASTM C1186, Type A, minimum Grade II (or ISO 8336, Category A, minimum Class 2). Lap siding shall be lapped a minimum of ¼ inches (32 mm) and lap siding not having tongue-and-groove end joints shall have the ends protected with caulking, covered with an H-section joint cover, located over a strip of flashing or shall be otherwise designed to comply with Section 1403.2. Lap siding courses shall be installed with the fastener heads exposed (face-nailed) or concealed in accordance with the approved manufacturer's instructions.
1405.17 Fastening. Weather boarding and wall coverings shall be securely fastened with aluminum, copper, zinc, zinc-coated or other approved corrosion-resistant fasteners to meet the design wind pressures specified in Section 1609 in accordance with the nailing schedule in Table 2304.10.1, the HVHZ shall comply with Table 2324.1 or the approved manufacturer’s instructions. Shingles and other weather coverings shall be attached with appropriate standard-shingle nails to furring strips securely nailed to studs, or with approved mechanically bonding nails, except where sheathing is of wood not less than 1-inch (25 mm) nominal thickness or of wood structural panels as specified in Table 2308.9.3(3) (the HVHZ shall comply with Section 2322).

CHAPTER 15
ROOF ASSEMBLIES AND ROOFTOP STRUCTURES
Revise the following sections to read as follows:

1503.4.3 Gutters. Gutters and leaders placed on the outside of buildings, other than Group R-3, private garages and buildings of Type V construction, shall be of noncombustible material or a minimum of Schedule 40 plastic pipe.

1503.4.3.1 Wind resistance of gutters. Gutters shall be designed, constructed and installed to resist wind loads in accordance with 1609 and shall be tested in accordance with Test Methods G-1 and G-2 of ANSI/SPRI GT-1.

1504.3.1 Other roof systems. Built-up, modified bitumen, fully adhered or mechanically attached single-ply roof systems, metal panel roof systems applied to a solid or closely fitted deck and other types of membrane roof coverings shall be tested in accordance with FM 4474, UL 580 or UL 1897.

1504.3.2 Metal panel roof systems. Metal panel roof system through fastened or standing seam shall be tested in accordance with UL 580 or ASTM E1592 or TAS 125.

Exceptions: Metal roofs constructed of cold-formed steel, where the roof deck acts as the roof covering and provides both weather protection and support for structural loads, shall be permitted to be designed and tested in accordance with the applicable referenced structural design standard in Section 2210.1.

1504.10 Ridge vents of metal, plastic or composition material. All ridge and off-ridge vents shall be installed in accordance with the manufacturer’s installation instructions and be capable of resisting the wind loads specified in Chapter 16. Ridge and off-ridge vents shall also be tested in accordance with TAS 100(A) for wind driven water infiltration. All ridge and off-ridge vents shall be limited by the roof mean height as tested in accordance with TAS 100(A), and shall be listed in the system manufacturer’s product approval.

1507.2.5 Asphalt shingles. Asphalt shingles shall have self-seal strips or be interlocking and comply with ASTM D225 or ASTM D3462. Shingles shall also comply with Section Table 1507.2.7.1. Asphalt shingle packaging shall bear labeling indicating compliance with ASTM D7158 Class H one of the required classifications as shown in Table 1507.2.7.1.
1507.2.7.1 Wind resistance of asphalt shingles. Asphalt shingles shall be classified in accordance with ASTM D3161, ASTM D7158 as Class H, or TAS 107. Shingles classified as ASTM D3161 Class D or ASTM D7158 Class G are acceptable for use where V_{max} is equal to or less than 100 mph. Shingles classified as ASTM D3161 Class F, ASTM D7158 Class H or TAS 107 are acceptable for use for all wind speeds. Asphalt shingle wrappers shall indicate compliance with ASTM D7158 Class H one of the required classifications, as shown in Table 1507.2.7.1.

TABLE 1507.2.7.1

CLASSIFICATION OF ASPHALT SHINGLES

(Delete Table 1507.2.7.1)

1507.2.7.2 Asphalt shingle installation at eaves. Asphalt shingle starter strips at eaves shall comply with one of the following:

1. Set starter strips in a minimum 8-in.-wide strip of compatible roofing cement. The maximum thickness of roofing cement shall be $\frac{3}{4}$ in. Starter strips shall also be fastened parallel to the eaves along a line above the eave line according to the manufacturer’s specifications. Fasteners shall be positioned so they will not be exposed under the cutouts in the first course. Starter strips and shingles must not extend more than $\frac{1}{4}$ in. beyond the drip edge.

2. A self-adhering starter strip complying with the manufacturer’s instructions with asphalt adhesive strips at the eave. The starter strip shall be installed so that starter strip adheres to and covers the drip edge top surface.

1507.2.7.3 Asphalt shingle installation at gable rakes. Asphalt shingles at gable rakes shall comply with one of the following:

1. Shingles at gable rakes shall be set in a minimum 8-in.-wide strip of compatible roofing cement. The maximum thickness of roofing cement shall be $\frac{3}{4}$ in. Shingles at gable rakes shall also be fastened in accordance with the manufacturer’s specifications.

2. Set starter strips at gable rakes in a minimum 8-in.-wide strip of compatible roofing cement. The maximum thickness of roofing cement shall be $\frac{1}{4}$ in. Starter strips shall be fastened parallel to the gable rake according to the manufacturer’s specifications. Fasteners shall be positioned so they will not be exposed under the cutouts in the first course. Starter strips and shingles must not extend more than $\frac{1}{4}$ in. beyond the drip edge.

3. A self-adhering starter strip complying with the manufacturer’s instructions with asphalt adhesive strips at the gable rake. The starter strip shall be installed so that starter strip adheres to and covers the drip edge top surface.

1507.2.9.3 Drip edge. Provide drip edge at eaves and gables of shingle roofs. Overlap to be a minimum of 3 inches (76 mm). Eave drip edges shall extend 1/2 inch (13 mm) below sheathing and extend back on the roof a minimum of 2 inches (51 mm). Drip edge at gables shall be installed over the underlayment. Drip edge at eaves shall be permitted to be installed either over or under the underlayment. If installed over the underlayment, there shall be a minimum 4 inches (51 mm) width of roof cement shall be
installed over the drip edge flange. Drip edge shall be mechanically fastened a maximum of 4 1/2 inches (102 405 mm) on center with ring shank nails. Fasteners shall be placed in an alternating (staggered) pattern along the length of the drip edge with adjacent fasteners placed near opposite edges of the leg/flange of drip edge on the roof. Where the V_{max} as determined in accordance with Section 1609.3.1, is 110 mph (177 km/h) or greater or the mean roof height exceeds 33 feet (10 058 mm), drip edges shall be mechanically fastened a maximum of 4 inches (102 mm) on center.

1507.3.7 Attachment. Clay and concrete roof tiles shall be fastened in accordance with Section 1609 or in accordance with FRSA/TRI Florida High Wind Concrete and Clay Roof Tile Installation Manual, Sixth Edition where the basic wind speed, V_{asd}, is determined in accordance with Section 1609.3.1.

Exceptions:

1. Concrete and clay tiles shall be mechanically attached or adhesive-set. Mortar attachment of concrete and clay roof tile is not permitted.
2. Hip and ridge concrete and clay tiles shall be attached to a ridge board.
3. At eaves, each tile in the first course of tiles shall be secured with a metal clip or be adhesive-set.
4. For buildings located within 3000 ft. of the coast, all metal clips, straps, and fasteners shall be stainless steel.

CHAPTER 16
STRUCTURAL DESIGN

Revise the following sections to read as follows:

1609.1.2 Protection of openings. In wind-borne debris regions, glazed openings, exterior doors, and garage doors in buildings shall be impact resistant or protected with an impact-resistant covering meeting the requirements of ANSI/DASMA 115 (for garage doors and rolling doors) or TAS 201, 202 and 203, AAMA 506, ASTM E1996 and ASTM E1886 referenced herein, or an approved impact-resistant standard as follows:

1. Glazed openings located within 30 feet (9144 mm) of grade shall meet the requirements of the large missile test of ASTM E1996.
2. Glazed openings located more than 30 feet (9144 mm) above grade shall meet the provisions of the small missile test of ASTM E1996.
3. Storage sheds that are not designed for human habitation and that have a floor area of 720 square feet (67 m²) or less are not required to comply with the mandatory windborne debris impact standards of this code.
4. Openings in sunrooms, balconies or enclosed porches constructed under existing roofs or decks are not required to be protected provided the spaces are separated from the building interior by a wall and all openings in the separating wall are protected in accordance with Section 1609.1.2 above. Such spaces shall be permitted to be designed as either partially enclosed or enclosed structures.

Exceptions:

1. Plywood Wood structural panels with a minimum thickness of 19/32-inch (15 mm) 7/16-inch (11.1 mm) and maximum span between lines of fasteners of 44 inches (1118 mm) shall be permitted for
opening protection in one-story Group R-3 or R-4 occupancy buildings with a mean roof height of 33 feet (10,058 mm) or less where V_{ult} is 180 mph (80 m/s) or less. Panels shall be precut to overlap the wall such that they extend a minimum of 2 inches (50.8 mm) beyond the lines of fasteners and are attached to the framing surrounding the opening containing the product with the glazed opening. Panels shall be predrilled as required for the attachment method and secured with corrosion-resistant attachment hardware permanently installed on the building.

a. Attachments shall be designed to resist the components and cladding loads determined in accordance with the provisions of ASCE 7, with corrosion-resistant attachment hardware provided and anchors permanently installed on the building.

b. As an alternative, panels shall be fastened at 16 inches (406.4 mm) on center along the edges of the opposing long sides of the panel.

i. For wood frame construction, fasteners shall be located on the wall such that they are embedded into the wall framing members, nominally a minimum of 1 inch (25.4 mm) from the edge of the opening and 2 inches (50.8 mm) inward from the panel edge. Permanently installed anchors used for buildings with wood frame wall construction shall have the threaded portion that will be embedded into the wall framing based on 1/4-inch (6.35 mm) lag screws and shall be long enough to penetrate through the exterior wall covering with sufficient embedment length to provide an allowable minimum 300 pounds ASD design withdrawal capacity.

ii. For concrete or masonry wall construction, fasteners shall be located on the wall a minimum of 11/2 inches (37.9 mm) from the edge of the opening and 2 inches (50.8 mm) inward of the panel edge. Permanently installed anchors in concrete or masonry wall construction shall have an allowable minimum 300 pounds ASD design withdrawal capacity and an allowable minimum 525 pounds ASD design shear capacity with a 1 ½ inch edge distance. Hex nuts, washered wing-nuts, or bolts used to attach the wood structural panels to the anchors shall be minimum ¼-inch (6.4 mm) hardware and shall be installed with or have integral washers with a minimum 1-inch (25 mm) outside diameter.

iii. Vibration-resistant alternative attachments designed to resist the component and cladding loads determined in accordance with provisions of ASCE 7 shall be permitted.

2. Glazing in Risk Category I buildings, including greenhouses that are occupied for growing plants on a production or research basis, without public access shall be permitted to be unprotected.

3. Glazing in Risk Category II, III or IV buildings located over 60 feet (18,288 mm) above the ground and over 30 feet (9,144 mm) above aggregate surface roofs located within 1,500 feet (458 m) of the building shall be permitted to be unprotected.

1609.1.3 Impact protection for Risk Category III and IV buildings. For Risk Category III and IV buildings, all parts or systems of a building or structure envelope such as, but not limited, to exterior walls, roof, outside doors, skylights, glazing and glass block shall be impact resistant or protected with an impact-resistant covering meeting the requirements of ANSI/DASMA 115 (for garage doors and rolling doors) or TAS 201, 202 and 203, AAMA 506, or ASTM E1996 and ASTM E1886 referenced herein.

Exception: The following structures or parts of structures shall not be required to meet the provisions of this section:

- a. Roof assemblies for screen rooms, porches, canopies, etc., attached to a building that do not breach the exterior wall or building envelope and have no enclosed sides other than screen.
- b. Soffits, soffit vents and ridge vents.
- c. Vents in garages with four or fewer cars.
d. Exterior wall or roof openings for wall- or roof-mounted HVAC equipment.
e. Openings for roof-mounted personnel access roof hatches.
f. Louvers in compliance with Section 1609.1.2.1.
g. Exterior balconies or porches under existing roofs or decks enclosed with screen or removable vinyl and acrylic panels complying with Chapter 20 shall not be required to be protected and openings in the wall separating the unit from the balcony or porch shall not be required to be protected unless required by other provisions of this code.

1609.1.3.1 Construction assemblies deemed to comply with Section 1609.1.3. The following assemblies are deemed to comply with Section 1609.1.3:
1. Exterior concrete masonry walls of minimum nominal 8-inch (203 mm) thickness, constructed in accordance with Chapter 21.
2. Exterior frame walls or gable ends constructed in accordance with Chapters 22 and 23 sheathed with a minimum 19/32-inch (15 mm) CD exposure 1 plywood and clad with wire lath and stucco installed in accordance with Chapter 25 of this code.
3. Exterior frame walls and roofs constructed in accordance with Chapter 22 of this code sheathed with a minimum 24-gage rib-deck-type material and clad with an approved wall finish.
4. Exterior reinforced concrete elements constructed of solid normal weight concrete, designed in accordance with Chapter 19 and having a minimum thickness of 2 inches (51 mm).
5. Roof systems constructed in accordance with Chapter 22 or Chapter 23 of this code, sheathed with a minimum 19/32-inch (15 mm) CD exposure 1 plywood or minimum nominal 1-inch (25 mm) wood decking and surfaced with an approved roof system installed in accordance with Chapter 15 of this code.

CHAPTER 17
SPECIAL INSPECTIONS AND TESTS
Revise the following sections to read as follows:

1709.5.1 Exterior windows and doors. Exterior windows and sliding doors shall be tested and labeled as conforming to AAMA/WDMA/CSA101/I.S.2/A440 or TAS 202 (HVHZ shall comply with TAS 202 and ASTM E1300 or Section 2404). Exterior windows shall be compressed seal types such as awnings, casements, or fixed assemblies. Exterior side-hinged doors shall be tested and labeled as conforming to AAMA/WDMA/CSA101/I.S.2/A440 or comply with Section 1709.5.2. Products tested and labeled as conforming to AAMA/WDMA/CSA 101/I.S.2/A440 shall not be subject to the requirements of Sections 2403.2 and 2403.3. Exterior windows and doors shall be labeled with a permanent label, marking, or etching providing traceability to the manufacturer and product. The following shall also be required on a permanent label or on a temporary supplemental label applied by the manufacturer: information identifying the manufacturer, the product model/series number, positive and negative design pressure rating, product maximum size tested, impact-resistant rating if applicable, Florida product approval number or Miami-Dade product approval number, applicable test standard(s), performance grade and approved product certification agency, testing laboratory, evaluation entity or Miami-Dade product approval. The product performance grade shall match the positive design pressure rating. The labels are limited to one design pressure rating per referenced standard. The temporary supplemental label shall remain on the window or door until final approval by the building official.

Exceptions: (no change to exceptions)
1709.5.2 Exterior windows and door assemblies not provided for in Section 1709.5.1. Exterior window and door assemblies shall be tested in accordance with ASTM E330 or TAS 202 (HVHZ shall comply with TAS 202). Exterior window and door assemblies containing glass shall comply with Section 2403. The design pressure for testing shall be calculated in accordance with Chapter 16. Each assembly shall be tested for 10 seconds at a load equal to 1.5 times the design pressure. Exterior wind and door assemblies shall also be tested in accordance with ASTM E547 for water penetration resistance. The minimum water penetration resistance test pressure shall be 20% of the positive design wind pressure rating.

Exceptions: (no change to exceptions)

1709.10 Soffit.

1709.10.1 Product approval. Manufactured soffit materials and systems shall be subject to statewide or local product approval as specified in Florida Administrative Code Rule 61G-20. The net free area of the manufactured soffit material or system shall be included in the product approval submittal documents.

1709.10.2 Labels. Individual manufactured soffit pieces shall be marked at not more than 4 feet (1.2 m) on center with a number or marking that ties the product back to the manufacturer.

1709.10.3 The following information shall be included on the manufactured soffit material packaging or on the individual manufactured soffit material or system pieces:
1. Product approval holder and/or manufacturer name and city and state of manufacturing plant.
2. Product model number or name.
3. Method of approval and approval numbers as applicable. Methods of approval include, but are not limited to: Florida Building Commission FL #; Miami-Dade NOA; TDI Product Evaluation; and ICC-ES.
4. The test standard or standards specified in Chapter 14 used to demonstrate code compliance.
5. The net free area shall be included on the packaging or label.

1709.10.4 Wind resistance of soffits. Soffits and their attachments shall be capable of resisting wind loads specified in Section 1609 for walls using an effective wind area of 10 square feet.

1709.10.5 Wind-driven rain resistance of soffits. All ventilated soffit panels shall be tested for wind-driven rain resistance in accordance with TAS 100(A).

1709.10.6 Soffit installation. Soffit installation shall comply with Section 1709.10.6.1, 1709.10.6.2, 1709.10.6.3, or 1709.10.6.4.

1709.10.6.1 Vinyl soffit panels. Vinyl soffit panels shall be installed using fasteners specified by the manufacturer and shall be fastened at both ends to a supporting component such as a nailing strip, fascia or sub-fascia component in accordance with Figure 1709.10.6.1(1). Where the unsupported span of soffit panels is greater than 12 inches, intermediate nailing strips shall be provided in accordance with Figure 1709.10.6.1(2) unless a larger span is permitted in accordance with the manufacturer’s product approval specification. Vinyl soffit panels shall be installed in accordance with the manufacturer’s product approval specification and limitations of use. Fascia covers shall be installed in accordance with the manufacturer’s product approval specification and limitations of use.
FIGURE 1709.10.6.1(1)

TYPICAL SINGLE SPAN VINYL SOFFIT PANEL SUPPORT
1709.10.6.2 Fiber-cement soffit panels. Fiber-cement soffit panels shall be a minimum of 1/4 inch thick and shall comply with the requirements of ASTM C1186, Type A, minimum Grade II or ISO 8336, Category A, minimum Class 2. Panel joints shall occur over framing or over wood structural panel sheathing. Soffit panels shall be installed with spans and fasteners in accordance with the manufacturer’s product approval specification and limitations of use.

1709.10.6.3 Hardboard soffit panels. Where the design wind pressure is 30 psf or less, soffit panels shall be a minimum of 7/16 inch in thickness and shall be fastened to framing or nailing strips with 2 ½” x 0.113” siding nails spaced not more than 6 inches on center at panel edges and 12 inches on center at intermediate supports. Where the design wind pressure is greater than 30 psf, hardboard soffit panels shall be installed in accordance with the manufacturer’s product approval specification and limitations of use.
1709.10.6.4 Wood structural panel soffit prescriptive alternative. Wood structural panel soffit panels are permitted to be installed in accordance with Table 1709.10.6.4.

TABLE 1709.10.6.4
INSTALLATION REQUIREMENTS FOR WOOD STRUCTURAL PANEL, CLOSED SOFFIT

<table>
<thead>
<tr>
<th>Maximum Design Pressure (- or + psf)</th>
<th>Minimum Panel Span Rating</th>
<th>Minimum Panel Performance Category</th>
<th>Nail Type and Size (inch)</th>
<th>Fastener Spacing along Edges and Intermediate Supports (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Galvanized Steel</td>
</tr>
<tr>
<td>30</td>
<td>24/0</td>
<td>3/8</td>
<td>6d box (2 x 0.099 x 0.266 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>24/0</td>
<td>3/8</td>
<td>6d box (2 x 0.099 x 0.266 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>24/0</td>
<td>3/8</td>
<td>6d box (2 x 0.099 x 0.266 head diameter)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8d common (2½ x 0.131 x 0.281 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>24/0</td>
<td>3/8</td>
<td>6d box (2 x 0.099 x 0.266 head diameter)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8d common (2½ x 0.131 x 0.281 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>70</td>
<td>24/16</td>
<td>7/16</td>
<td>8d common (2½ x 0.131 x 0.281 head diameter)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10d box (3 x 0.128 x 0.312 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>80</td>
<td>24/16</td>
<td>7/16</td>
<td>8d common (2½ x 0.131 x 0.281 head diameter)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10d box (3 x 0.128 x 0.312 head diameter)</td>
<td>6</td>
</tr>
<tr>
<td>90</td>
<td>32/16</td>
<td>15/32</td>
<td>8d common (2½ x 0.131 x 0.281 head diameter)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10d common (3 x 0.148 x 0.312 head diameter)</td>
<td>6</td>
</tr>
</tbody>
</table>

a. Fasteners shall comply with Section 1405.17.
b. Maximum spacing of soffit framing members shall not exceed 24 inches.
c. Wood structural panels shall be of an exterior exposure grade.
d. Wood structural panels shall be installed with strength axis perpendicular to supports with a minimum of two continuous spans.
e. Wood structural panels shall be attached to soffit framing members with specific gravity of at least 0.42. Framing members shall be minimum 2x3 nominal with the larger dimension in the cross section aligning with the length of fasteners to provide sufficient embedment depths.
f. Spacing at intermediate supports is permitted to be 12 inches on center.
CHAPTER 23
WOOD

Revise the following sections to read as follows:

2304.6 Exterior wall sheathing. Wall sheathing on the outside of exterior walls, including gables, and the connection of the sheathing to framing shall be designed in accordance with the general provisions of this code and shall be capable of resisting wind pressures in accordance with Section 1609. Wood structural panel wall sheathing shall be plywood with a minimum panel thickness of 19/32 inch.

2304.8.2 Structural roof sheathing. Structural roof sheathing shall be designed in accordance with the general provisions of this code and the special provisions in this section.

Roof sheathing conforming to the provisions of Table 2304.8(1), 2304.8(2), 2304.8(3) or 2304.8(5) shall be deemed to meet the requirements of this section, except wood structural panel roof sheathing shall be plywood with a minimum panel thickness of 19/32 inch. Wood structural panel roof sheathing shall be of a type manufactured with exterior glue (Exposure 1 or Exterior).

2304.10.1 Fastener requirements. Connections for wood members shall be designed in accordance with the appropriate methodology in Section 2301.2. The number and size of fasteners connecting wood members shall not be less than that set forth in Table 2304.10.1, except connections with staples shall not be permitted.

2304.10.2 Sheathing fasteners. Sheathing nails or other approved sheathing connectors shall be driven so that their head or crown is flush with the surface of the sheathing. Roof sheathing nails shall be ring shank roof sheathing (RSRS) nails complying with ASTM D1667.

2304.10.4 Other fasteners. Clips, staples, glues and other approved methods of fastening are permitted in accordance with their Product Approval where approved. Connections of wood members with staples is not permitted.

TABLE 2304.10.1—continued

FASTENING SCHEDULE

(excerpt)

<table>
<thead>
<tr>
<th>DESCRIPTION OF BUILDING ELEMENTS</th>
<th>NUMBER AND TYPE OF FASTENER</th>
<th>SPACING AND LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood structural panels (WSP), subfloor, roof and interior wall sheathing to framing and particleboard wall sheathing to framing*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edges (inches)</td>
<td>Intermediate Supports (inches)</td>
<td></td>
</tr>
<tr>
<td>31. 3/8 “ – 1/2 "</td>
<td>6d common or deformed (2” × 0.113") (subfloor and wall)</td>
<td>6</td>
</tr>
<tr>
<td>8d common or deformed (2 1/2 " × 0.121"), or RSRS 01 (2 1/8" × 0.113") nail (roof)* (See Section 2304.10.2 for minimum roof sheathing fasteners)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>23/8 “ × 0.113” nail (subfloor and wall)</td>
<td>23/8 “ × 0.113” nail (See Section 2304.10.2 for minimum roof sheathing fasteners)</td>
<td>4</td>
</tr>
<tr>
<td>1 1/4 “ × 16 gage staple, 1/16 “ crown (subfloor and wall)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2 3/8 “ × 0.113” nail</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
2305.2 Diaphragm deflection.

The deflection of wood frame diaphragms shall be determined in accordance with AWC SDPWS. The deflection (Δ) of a blocked wood structural panel diaphragm uniformly fastened throughout with staples is permitted to be calculated in accordance with Equation 23-1. If not uniformly fastened, the constant 0.188 (For SI: 1/1627) in the third term shall be modified by an approved method.

\[
\Delta = \frac{5vL^3}{8EAb} + \frac{vL}{4Gt} + 0.188Le_n + \frac{\sum(\Delta_X)}{2b}
\]

For SI: \[
\Delta = \frac{0.052vL^3}{EAb} + \frac{vL}{4Gt} + \frac{Le_n}{1627} + \frac{\sum(\Delta_X)}{2b}
\]

where:
- \(A\) = Area of chord cross section, in square inches (mm²).
- \(b\) = Diaphragm width, in feet (mm).
- \(E\) = Elastic modulus of chords, in pounds per square inch (N/mm²).
- \(e_n\) = Staple deformation, in inches (mm) [see Table 2305.2(1)].
- \(Gt\) = Panel rigidity through the thickness, in pounds per inch (N/mm) of panel width or depth [see Table 2305.2(2)].
- \(L\) = Diaphragm length, in feet (mm).
- \(v\) = Maximum shear due to design loads in the direction under consideration, in pounds per linear foot (plf) (N/mm).
- \(\Delta\) = The calculated deflection, in inches (mm).
- \(\sum(\Delta_X)\) = Sum of individual chord-splice slip values on both sides of the diaphragm, each multiplied by its distance to the nearest support.

<table>
<thead>
<tr>
<th>32. (\frac{19}{32}) – (\frac{3}{4})</th>
<th>1 3/4" 16 gage staple, (\frac{7}{16})" crown (roof)</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.219/32 – 3/4</td>
<td>8d common (2 1/2" × 0.131”); or 6d deformed (2" × 0.113”) (subfloor and wall)</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>32. 19/32 – 3/4</td>
<td>8d common or deformed (2-1/2" × 0.131”) (roof), or RRS-01 (2-3/8” × 0.113”) nail(roof)²</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>(See Section 2304.10.2 for minimum roof sheathing fasteners)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33. (\frac{7}{8}) – 1 1/4</td>
<td>2 3/8" × 0.113” nail; or 2" 16 gage staple, (\frac{7}{16})" crown</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>(See Section 2304.10.2 for minimum roof sheathing fasteners)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2305.3 Shear wall deflection. The deflection of wood-frame shear walls shall be determined in accordance with AWC SDPWS. The deflection (Δ) of a blocked wood structural panel shear wall uniformly fastened throughout with staples is permitted to be calculated in accordance with Equation 23-2:

$$
\Delta = \frac{8vh^3}{EAb} + \frac{vh}{Gt} + 0.75he_a + d_a \frac{h}{b}
$$

For SI: $\Delta = \frac{vh^3}{3EAb} + \frac{vh}{Gt} + \frac{he_a}{407.6} + d_a \frac{h}{b}$

where:

- $A =$ Area of boundary element cross-section in square inches (mm2) (vertical member at shear wall boundary).
- $b =$ Wall width, in feet (mm).
- $d_a =$ Vertical elongation of overturning anchorage (including fastener slip, device elongation, anchor rod elongation, etc.) at the design shear load (v).
- $E =$ Elastic modulus of boundary element (vertical member at shear wall boundary), in pounds per square inch (N/mm2).
- $e_n =$ Staple deformation, in inches (mm) [see Table 2305.2(1)].
- $G_t =$ Panel rigidity through the thickness, in pounds per inch (N/mm) of panel width or depth [see Table 2305.2(2)].
- $h =$ Wall height, in feet (mm).
- $v =$ Maximum shear due to design loads at the top of the wall, in pounds per linear foot (N/mm).
- $\Delta =$ The calculated deflection, in inches (mm).

TABLE 2305.2(1)

VALUES (e_n) FOR USE IN CALCULATING DIAPHRAGM AND SHEAR WALL DEFLECTION DUE TO FASTENER SLIP (Structural I)**

(Delete Table 2305.2(1))

2306.2 Wood-frame diaphragms. Wood-frame diaphragms shall be designed and constructed in accordance with AWC SDPWS. Where panels are fastened to framing members with staples, requirements and limitations of AWC SDPWS shall be met and the allowable shear values set forth in Table 2306.2(1) or 2306.2(2) shall be permitted. The allowable shear values in Tables 2306.2(1) and 2306.2(2) are permitted to be increased 40 percent for wind design.

TABLE 2306.2(1)

VALUES OF G_t FOR USE IN CALCULATING DEFLECTION OF WOOD STRUCTURAL PANEL SHEAR WALLS AND DIAPHRAGMS

(Delete Table 2306.2(1))
ALLOWABLE SHEAR VALUES (POUNDS PER FOOT) FOR WOOD STRUCTURAL PANEL DIAPHRAGMS UTILIZING STAPLES WITH FRAMING OF DOUGLAS FIR-LARCH, OR SOUTHERN PINE\(^a\) FOR WIND OR SEISMIC LOADING\(^b\)

(Delete Table 2306.2(1))

<table>
<thead>
<tr>
<th>TABLE 2306.2(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOWABLE SHEAR VALUES (POUNDS PER FOOT) FOR WOOD STRUCTURAL PANEL-BLOCKED DIAPHRAGMS UTILIZING MULTIPLE ROWS OF STAPLES (HIGH-LOAD DIAPHRAGMS) WITH FRAMING OF DOUGLAS FIR-LARCH OR SOUTHERN PINE(^a) FOR WIND OR SEISMIC LOADING(^b)</td>
</tr>
</tbody>
</table>

(Delete Table 2306.2(2))

2306.3 Wood-frame shear walls. Wood-frame shear walls shall be designed and constructed in accordance with AWC SDPWS. Where panels are fastened to framing members with staples, requirements and limitations of AWC SDPWS shall be met and the allowable shear values set forth in Table 2306.3(1), 2306.3(2) or 2306.3(3) shall be permitted. The allowable shear values in Tables 2306.3(1) and 2306.3(2) are permitted to be increased 40 percent for wind design. Panels complying with ANSI/APA PRP-210 shall be permitted to use design values for Plywood Siding in the AWC SDPWS.

<table>
<thead>
<tr>
<th>TABLE 2306.3(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOWABLE SHEAR VALUES (POUNDS PER FOOT) FOR WOOD STRUCTURAL PANEL SHEAR WALLS UTILIZING STAPLES WITH FRAMING OF DOUGLAS FIR-LARCH OR SOUTHERN PINE(^a) FOR WIND OR SEISMIC LOADING(^b)</td>
</tr>
</tbody>
</table>

(Delete Table 2306.3(1))

<table>
<thead>
<tr>
<th>TABLE 2306.3(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOWABLE SHEAR VALUES (PLF) FOR WIND OR SEISMIC LOADING ON SHEAR WALLS OF FIBERBOARD SHEATHING BOARD CONSTRUCTION UTILIZING STAPLES FOR TYPE V CONSTRUCTION ONLY(^a,b,c,d,e)</td>
</tr>
</tbody>
</table>

(Delete Table 2306.3(2))

<table>
<thead>
<tr>
<th>TABLE 2306.3(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOWABLE SHEAR VALUES FOR WIND OR SEISMIC FORCES FOR SHEAR WALLS OF LATH AND PLASTER OR GYPSUM BOARD WOOD FRAMED WALL ASSEMBLIES UTILIZING STAPLES</td>
</tr>
</tbody>
</table>

(Delete Table 2306.3(3))

CHAPTER 25
GYPSUM BOARD, GYPSUM PANEL PRODUCTS AND PLASTER

Revise the following sections to read as follows:
2510.6 Water-resistive barriers. Water-resistive barriers shall be installed as required in Section 1404.2 and, where applied over wood-based sheathing, shall include a water-resistive vapor-permeable barrier with a performance at least equivalent to two layers of water-resistive barrier complying with ASTM E2556, Type I. The individual layers shall be installed independently such that each layer provides a separate continuous plane and any flashing (installed in accordance with Section 1405.4) intended to drain to the water-resistive barrier is directed between the layers. A minimum 3/16-inch (4.8 mm) ventilated drainage space shall be required between the two layers.

Exception: A ventilated drainage space having a minimum drainage efficiency of 90% as measured in accordance with ASTM E2273 or Annex A2 of ASTM E2925 shall be permitted in lieu of a clear air space. Where the water-resistive barrier that is applied over wood-based sheathing has a water resistance equal to or greater than that of a water-resistive barrier complying with ASTM E2556, Type II and is separated from the stucco by an intervening, substantially nonwatery-absorbing layer or drainage space.
<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Source/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls constructed according to the masonry and concrete chapters in the code</td>
<td>FBC HRAC recommendation</td>
</tr>
<tr>
<td>Brick veneer tie attachment and spacing</td>
<td>FEMA P-499 TFS 5.4</td>
</tr>
<tr>
<td>Face-nailing fiber cement lap siding</td>
<td>FEMA Hurricane Harvey MAT report
FEMA P-499 TFS 5.3
FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td>Vinyl siding design wind pressure increase</td>
<td>Wind Loads on Components of Multi-Layer Wall Systems with Air-Permeable Exterior Cladding, IBHS</td>
</tr>
<tr>
<td>Wind resistance of gutters</td>
<td>FEMA Hurricane Charley, Hurricane Ivan, and Hurricane Katrina MAT reports
ICC Code Development process, code changes S24-16 and S17-19</td>
</tr>
<tr>
<td>Metal panel roof systems tested in accordance with ASTM E1592</td>
<td>FBC HRAC recommendation
FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td>Ridge vent testing for wind loads and wind-driven rain</td>
<td>FBC HVHZ
FEMA Hurricane Michael Recovery Advisory 2
FEMA P-499 TFS 7.5</td>
</tr>
<tr>
<td>Asphalt shingle classification</td>
<td>FEMA Hurricane Harvey Recovery Advisory 2
General enhanced construction recommendation</td>
</tr>
<tr>
<td>Asphalt shingle installation</td>
<td>IBHS Fortified Roof
FEMA Hurricane Harvey Recovery Advisory 2</td>
</tr>
<tr>
<td>Drip edge installation</td>
<td>IBHS Fortified Roof</td>
</tr>
<tr>
<td>Concrete and clay tile installation</td>
<td>FEMA P-499 TFS 7.4</td>
</tr>
<tr>
<td>Impact protection for windows, doors, and garage doors</td>
<td>IBHS Fortified Silver
FBC HVHZ</td>
</tr>
<tr>
<td>Impact protection of entire envelope for Risk Category III and IV buildings</td>
<td>FBC HVHZ
General enhanced construction recommendation</td>
</tr>
<tr>
<td>Window and door types and testing</td>
<td>General enhanced construction recommendation
FEMA Hurricane Michael Recovery Advisory 2
University of Florida report to FBC - Comparison of Severe Wind-Driven Rain Test Methods for Fenestration</td>
</tr>
<tr>
<td>Soffit installation and testing</td>
<td>FEMA Hurricane Irma Recovery Advisory 2
FEMA Hurricane Michael Recovery Advisory 2
FBC HVHZ</td>
</tr>
<tr>
<td>Topic</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Wall and roof sheathing thickness and type</td>
<td>IBHS Fortified Silver 7th Edition (2020) FBC Residential</td>
</tr>
<tr>
<td>Roof sheathing attachment</td>
<td>FBC HVHZ</td>
</tr>
<tr>
<td></td>
<td>IBHS Fortified Roof</td>
</tr>
</tbody>
</table>
(Stafford)

OPTIONAL ENHANCED CONSTRUCTION SUPPLEMENT 7th Edition (2020) FLORIDA BUILDING CODE, RESIDENTIAL
OPTIONAL ENHANCED CONSTRUCTION SUPPLEMENT

7th Edition (2020) FLORIDA BUILDING CODE, RESIDENTIAL

The provisions of this supplement provide enhanced construction techniques for strengthening the wind, water intrusion, flood, and storm surge provisions of the Florida Building Code. The recommendations are shown legislatively to the 6th Edition (2017) Florida Building Code, Residential (new text shown underlined and deleted text shown stricken-through) so local jurisdictions can easily see the recommended changes and adopt the provisions accordingly. This supplement differs from the Enhanced Construction Supplement to the 6th Edition (2020) Florida Building Code, Residential in that enhanced construction code changes approved for the 7th Edition (2020) Florida Building Code, Residential have been removed.

CHAPTER 3
BUILDING PLANNING
Revise the following sections to read as follows:

R301.2.1.1 Wind design required. In regions where the ultimate design wind speed, \(V_{ult} \), from Figure R301.2(4) equals or exceeds 115 miles per hour (51 m/s), the design of concrete, masonry, wood, and steel buildings for wind loads shall be in accordance with one or more of the following methods:

1. AF&PA Wood Frame Construction Manual (WFCM).
2. Concrete and masonry walls are permitted to be designed in accordance with ICC Standard for Residential Construction in High-Wind Regions (ICC 600).
4. AISI Standard for Cold-Formed Steel Framing—Prescriptive Method For One- and Two-Family Dwellings (AISI S230).
5. Florida Building Code, Building; or
6. The MAF Guide to Concrete Masonry Residential Construction in High Wind Areas shall be permitted for applicable concrete masonry buildings for a basic wind speed of 130 mph (58 m/s) or less in Exposure B and 110 mph (49 m/s) or less in Exposure C in accordance with Figure R301.2(4) as converted in accordance with R301.2.1.3.

Wood structural panel roof and wall sheathing shall be plywood with a minimum panel thickness of 19/32 inch.

Exceptions:

1. Footings and foundations shall comply with Chapter 4.
2. Exterior windows and doors shall comply with Section R609.
3. For structural insulated panels, the provisions of this code apply in accordance with the limitations of Section R610.
4. Exterior wall coverings and soffits shall comply with Chapter 7
5. Roof sheathing shall be attached in accordance with Section R803.
6. Roof coverings shall comply with Chapter 9.
7. For concrete construction, the provisions of this code apply in accordance with the limitations of Section R608.2.

The elements of design not addressed by the methods in Items 1 through 6 shall be in accordance with the provisions of this code.

R301.2.1.2 Protection of openings. Exterior glazed openings in buildings located in windborne debris regions shall be protected from windborne debris. Glazed opening protection for windborne debris shall meet the requirements of the Large Missile Test of ASTM E1996 and ASTM E1886 as modified in Section 301.2.1.2.1, TAS 201, 202 and 203, or AAMA 506, as applicable. Garage door glazed opening protection for windborne debris shall meet the requirements of an approved impact-resisting standard or ANSI/DASMA 115.

1. Opening in sunrooms, balconies or enclosed porches constructed under existing roofs or decks are not required to be protected provided the spaces are separated from the building interior by a wall and all openings in the separating wall are protected in accordance with this section. Such space shall be permitted to be designed as either partially enclosed or enclosed structures.

2. Storage sheds that are not designed for human habitation and that have a floor area of 720 square feet (67 m2) or less are not required to comply with the mandatory wind-borne debris impact standard of this code.

Exception: Plywood or wood structural panels with a minimum thickness of 19/32-inch (15 mm) or 7/16 inch (11.1 mm) and maximum span between lines of fasteners of 44 inches (1118 mm) shall be permitted for opening protection in one-story Group R-3 or R-4 occupancy buildings with a mean roof height of 33 feet (10 058 mm) or less where V_{ult} is 180 mph (80 m/s) or less. Panels shall be precut to overlap the wall such that they extend a minimum of 2 inches (50.8 mm) beyond the lines of fasteners and are attached to the framing surrounding the opening containing the product with the glazed opening. Panels shall be predrilled as required for the attachment method and secured with corrosion-resistant attachment hardware permanently installed on the building.

a. Attachments shall be designed to resist the components and cladding loads determined in accordance with the provisions of ASCE 7, with corrosion-resistant attachment hardware provided and anchors permanently installed on the building.

b. As an alternative, panels shall be fastened at 16 inches (406.4 mm) on center along the edges of the opposing long sides of the panel.

i. For wood frame construction, fasteners shall be located on the wall such that they are embedded into the wall framing members, nominally a minimum of 1 inch (25.4 mm) from the edge of the opening and 2 inches (50.8 mm) inward from the panel edge. Permanently installed anchors used for buildings with wood frame wall construction shall have the threaded portion that will be embedded into the wall framing based on 1/4-inch (6.35 mm) lag screws and shall be long enough to penetrate through the exterior wall covering with sufficient embedment length to provide an allowable minimum 300 pounds ASD design withdrawal capacity.

ii. For concrete or masonry wall construction, fasteners shall be located on the wall a minimum of 11/2 inches (37.9 mm) from the edge of the opening and 2 inches (50.8 mm) inward of the panel edge. Permanently installed anchors in concrete or masonry wall construction shall have an allowable minimum 300 pounds ASD design withdrawal
capacity and an allowable minimum 525 pounds ASD design shear capacity with a 1 ½ inch edge distance. Hex nuts, washered wing-nuts, or bolts used to attach the wood structural panels to the anchors shall be minimum ¼ -inch (6.4 mm) hardware and shall be installed with or have integral washers with a minimum 1-inch (25 mm) outside diameter.

iii. Vibration-resistant alternative attachments designed to resist the component and cladding loads determined in accordance with provisions of ASCE 7 shall be permitted.

CHAPTER 6
WALL CONSTRUCTION

Revise the following sections to read as follows:

R602.3 Design and construction. Exterior walls of wood-frame construction shall be designed in accordance with Section R301.2.1.1 or ANSI AWC NDS. Wall sheathing shall be tightly fitted, diagonally placed boards with a minimum thickness of 5/8 inch or plywood with a minimum thickness of 19/32 inch.

R609.3 Testing and labeling. Exterior windows and sliding doors shall be tested by an approved independent laboratory, and bear a label identifying manufacturer, performance characteristics and approved inspection agency to indicate compliance with AAMA/WDMA/CSA 101/I.S.2/A440 or TAS 202 (HVHZ shall comply with TAS 202 and ASTM E1300). Exterior windows shall be compressed seal types such as awnings, casements, or fixed assemblies. Exterior side-hinged doors shall be tested and labeled as conforming to AAMA/WDMA/CSA 101/I.S.2/A440 or ANSI/WMA 100, or comply with Section R609.5. Exterior windows and doors shall be labeled with a permanent label, marking, or etching providing traceability to the manufacturer and product. The following shall also be required either on a permanent label or on a temporary supplemental label applied by the manufacturer: information identifying the manufacturer, the product model/series number, positive and negative design pressure rating, product maximum size tested, impact-resistance rating if applicable, Florida product approval number or Miami-Dade product approval number, applicable test standard(s), performance grade and approved product certification agency, testing laboratory, evaluation entity or Miami-Dade product approval. The product performance grade shall match the positive design pressure rating.

The labels are limited to one design pressure rating per reference standard. The temporary supplemental label shall remain on the window or door until final approval by the building official.

Exceptions: (no change to exceptions)

R609.5 Other exterior window and door assemblies. Exterior windows and door assemblies not included within the scope of Section R609.3 or R609.4 shall be tested in accordance with ASTM E330. Each assembly shall be tested for 10 seconds at a load equal to 1.5 times the design pressure. Exterior wind and door assemblies shall also be tested in accordance with ASTM E547 for water penetration resistance. The minimum water penetration resistance test pressure shall be 20% of the positive design wind pressure rating. Glass in assemblies covered by this exception shall comply with Section R308.5.

CHAPTER 7
WALL COVERING
Revise the following sections to read as follows:

R703.1.1 Water resistance. The exterior wall envelope shall be designed and constructed in a manner that prevents the accumulation of water within the wall assembly by providing a water-resistant barrier behind the exterior veneer as required by Section R703.2 and a means of draining to the exterior water that enters the assembly. Protection against condensation in the exterior wall assembly shall be provided in accordance with Section R702.7 of this code.

Exceptions:
1. A weather resistant exterior wall envelope shall not be required over concrete or masonry walls designed in accordance with Chapter 6 and flashed in accordance with Section R703.4 or R703.8.

(renumber remaining exceptions)

R703.7.3 Water-resistive barriers. Water-resistive barriers shall be installed as required in Section R703.2 and, where applied over wood-based sheathing, shall include a water-resistive vapor-permeable barrier with a performance at least equivalent to two layers of Grade D paper. The individual layers shall be installed independently such that each layer provides a separate continuous plane and any flashing (installed in accordance with Section R703.4) intended to drain to the water-resistive barrier is directed between the layers. A minimum 3/16-inch (4.8 mm) ventilated drainage space shall be required between the two layers.

Exception: A ventilated drainage space having a minimum drainage efficiency of 90% as measured in accordance with ASTM E2273 or Annex A2 of ASTM E2925 shall be permitted in lieu of a clear air space. Where the water-resistive barrier that is applied over wood-based sheathing has a water resistance equal to or greater than that of a water-resistive barrier complying with ASTM E2556, Type II and is separated from the stucco by an intervening, substantially nonwatery absorbing layer or drainage space.

R703.8.4 Anchorage. Masonry veneer shall be anchored to the supporting wall studs with corrosion-resistant metal ties embedded in mortar or grout and extending into the veneer a minimum of 11/2 inches (38 mm), with not less than 5/8-inch (15.9 mm) mortar or grout cover to outside face. Masonry veneer shall conform to Table R703.8.4(1). For masonry veneer tie attachment through insulating sheathing not greater than 2 inches (51 mm) in thickness to not less than 7/16 performance category wood structural panel, see Table R703.8.4(2).

TABLE R703.8.4(1)
TIE ATTACHMENT AND AIRSPACE REQUIREMENTS

<table>
<thead>
<tr>
<th>BACKING AND TIE</th>
<th>MINIMUM TIE</th>
<th>MINIMUM FASTENER*</th>
<th>AIRSPACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood stud backing with corrugated sheet metal</td>
<td>22 U.S. gage (0.0299 in.) × 7/8 in. wide</td>
<td>8d common nailb (2 1/2 in. × 0.131 in.) RSRS-03 (2½" x 0.131 ring shank nail) complying with ASTM F1667c</td>
<td>Nominal 1 in. between sheathing and veneer</td>
</tr>
</tbody>
</table>

a Performance requirements for masonry veneer ties are provided in ASTM F1667c.
| Wood stud backing with metal strand wire | W1.7 (No. 9 U.S. gage; 0.148 in.) with hook embedded in mortar joint | 8d common nail^a (2 3/4 in. × 0.131 in.) RSRS-03 (2½" x 0.131 ring shank nail) complying with ASTM F1667^b | Minimum nominal 1 in. between sheathing and veneer | Maximum 4 ½ in. between backing and veneer |
| Cold-formed steel stud backing with adjustable metal strand wire | W1.7 (No. 9 U.S. gage; 0.148 in.) with hook embedded in mortar joint | No. 10 screw extending through the steel framing a minimum of three exposed threads | Minimum nominal 1 in. between sheathing and veneer | Maximum 4 ½ in. between backing and veneer |

For SI: 1 inch = 25.4 mm.

^a In Seismic Design Category D0, D1 or D2, the minimum tie fastener shall be an 8d ring Shank nail (2½ in. × 0.131 in.) or a No. 10 screw extending through the steel framing a minimum of three exposed threads.

^b All fasteners shall have rust-inhibitive coating suitable for the installation in which they are being used, or be manufactured from material not susceptible to corrosion.

^c An airspace that provides drainage shall be permitted to contain some mortar from construction.

TABLE R703.8.4(2)

REQUIRED BRICK TIE SPACING FOR DIRECT APPLICATION TO WOOD STRUCTURAL PANEL SHEATHING^{abc}

(Delete Table R703.4.4(2))

R703.8.4.1 Size and spacing. Veneer ties, if strand wire, shall be not less in thickness than No. 9 U.S. gage [(0.148 inch) (4 mm)] wire and shall have a hook embedded in the mortar joint, or if sheet metal, shall be not less than No. 22 U.S. gage by [(0.0299 inch) (0.76 mm)] 7/8 inch (22 mm) corrugated. Each tie shall support not more than 1.33 2.67 square feet (0.12 25 m²) of wall area and shall be spaced not more than 16 32 inches (406 813 mm) on center horizontally and 11 24 inches (279 635 mm) on center vertically.

Exceptions:

1. In Seismic Design Category D0, D1 or D2 or townhouses in Seismic Design Category C or in wind areas of more than 30 pounds per square foot pressure (1.44 kPa), each tie shall support not more than 2 square feet (0.2 m²) of wall area.

2. Where the ultimate design wind speed, V_{ult}, exceeds 140 mph, each tie shall support not more than 1.8 square feet (0.167 m²) of wall area and anchors shall be spaced at a maximum 18 inches (457 mm) horizontally and vertically.

R703.10 Fiber cement siding.

R703.10.1 Panel siding. Fiber-cement panels shall comply with the requirements of ASTM C1186, Type A, minimum Grade II or ISO 8336, Category A, minimum Class 2 and the attachment shall meet the design wind pressures specified in Table R301.2(2) and Table R301.2(3) for walls using an effective wind area of 10 square feet. Panels shall be installed with the long dimension either parallel or perpendicular to framing. Vertical and horizontal joints shall occur over framing members and shall be protected with caulking, or with battens or flashing, or be vertical or horizontal shiplap, or otherwise designed to comply with Section R703.1. Where design wind pressures in Table R301.2(2) and Table R301.2(3) do not exceed 30 psf, panel siding shall be installed with fasteners in accordance with Table R703.3(1) or the approved manufacturer’s instructions.
R703.10.2 Lap siding. Fiber-cement lap siding having a maximum width of 12 inches (305 mm) shall comply with the requirements of ASTM C1186, Type A, minimum Grade II or ISO 8336, Category A, minimum Class 2. Lap siding shall be lapped a minimum of 11/4 inches (32 mm) and lap siding not having tongue-and-groove end joints shall have the ends protected with caulking, covered with an H-section joint cover, located over a strip of flashing, or shall be designed to comply with Section R703.1. Lap siding courses shall be installed with the fastener heads exposed (face-nailed) or concealed in accordance with Table R703.3(1) or approved manufacturer's instructions.

R703.11 Vinyl siding. Vinyl siding shall be certified and labeled as conforming to the requirements of ASTM D3679 by an approved quality control agency. Vinyl siding shall have an approved design wind pressure rating based on ASTM D3679 Annex 1 that meets or exceeds the design wind pressures determined in accordance with Table R301.2(2) and Table R301.2(3) multiplied by 2.22. Vinyl siding shall be installed over wood structural panel sheathing.

R703.18 Drained wall assembly over mass wall assembly. Where wood frame or other types of drained wall assemblies are constructed above mass wall assemblies, flashing or other approved drainage system shall be installed as required by Section R703.4.

SECTION R704
SOFFITS

R704.1 Wind and wind-driven rain resistance of soffits.

R704.1.1 Wind resistance of soffits. Soffits and their attachments shall be capable of resisting wind loads specified in Tables R301.2(2) and R301.2(3) for walls using an effective wind area of 10 square feet.

R704.1.2 Wind-driven rain resistance of soffits. All ventilated soffit panels shall be tested for wind-driven rain resistance in accordance with TAS 100(A).

CHAPTER 8
ROOF-CEILING CONSTRUCTION
Revise the following sections to read as follows:

R803.2 Wood structural panel Plywood roof sheathing.
R803.2.1 Identification and grade. Wood structural panels used as roof sheathing shall be plywood and shall conform to DOC PS 1, DOC PS 2, CSA O437 or CSA O325, and shall be identified for grade, bond classification and performance category by a grade mark or certificate of inspection issued by an approved agency. Wood structural panels Plywood roof sheathing shall comply with the grades specified in Table R503.2.1.1(1).

R803.2.2 Allowable spans. The minimum thickness and span rating for wood structural panel plywood roof sheathing shall not exceed the values set forth in Table R803.2.2 R503.2.1.1(1), or APA E30.
R803.2.3 Installation. Wood structural panel Plywood used as roof sheathing shall be installed with joints staggered in accordance with Section R803.2.3.1 for wood roof framing or with Table R804.3 for cold-formed steel roof framing. Wood structural panel Plywood roof sheathing shall not cantilever more than 9 inches beyond the gable end wall unless supported by gable overhang framing.

R803.2.3.1 Sheathing fastenings. Wood structural panel Plywood sheathing shall be fastened to roof framing in accordance with Table R803.2.3.1. Sheathing shall be fastened with ASTM F1667 RSRS-03 (2 ½" x 0.131") nails or ASTM F1667 RSRS-04 (3" x 0.120") nails. RSRS-03, and RSRS-04 are ring shank roof sheathing nails meeting the specifications in ASTM F1667.

Table R803.2.2

Minimum Plywood Roof Sheathing Thickness

<table>
<thead>
<tr>
<th>Rafter/Truss Spacing 24 in. o.c.</th>
<th>Wind Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>115 mph</td>
</tr>
<tr>
<td>Minimum Sheathing Thickness, inches (Panel Span Rating) Exposure B</td>
<td>7/16 (24/16)</td>
</tr>
<tr>
<td>Minimum Sheathing Thickness, inches (Panel Span Rating) Exposure C</td>
<td>7/16 (24/16)</td>
</tr>
<tr>
<td>Minimum Sheathing Thickness, inches (Panel Span Rating) Exposure D</td>
<td>15/32 (32/16)</td>
</tr>
</tbody>
</table>

Table R803.2.1

Plywood Roof Sheathing Attachment

<table>
<thead>
<tr>
<th>Roof Sheathing Attachment</th>
<th>Wind Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Rafter/Truss Spacing 24 in. o.c.</td>
<td>115 mph</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>E</td>
</tr>
<tr>
<td>Rafter/Truss SG = 0.42</td>
<td>6</td>
</tr>
<tr>
<td>Rafter/Truss SG = 0.49</td>
<td>6</td>
</tr>
</tbody>
</table>

Exposure B

| Rafter/Truss SG = 0.42 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 4 | 4 | 4 | 3 |
| Rafter/Truss SG = 0.49 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 6 | 6 | 4 | 4 | 4 | 4 | 3 |

Exposure C

| Rafter/Truss SG = 0.42 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 4 | 4 | 4 | 3 |
| Rafter/Truss SG = 0.49 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 3 |

Exposure D

| Rafter/Truss SG = 0.42 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 4 | 4 | 4 | 3 |
| Rafter/Truss SG = 0.49 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 3 |

E = Nail spacing along panel edges (inches)
F = Nail spacing along intermediate supports in the panel field (inches)
a. For sheathing located a minimum of 4 feet from the perimeter edge of the roof, including 4 feet on each side of ridges and hips, nail spacing is permitted to be 6 inches on center along panel edges and 6 inches on center along intermediate supports in the panel field.
b. Where rafter/truss spacing is less than 24 inches on center, roof sheathing fastening is permitted to be in accordance with the AWC WFCM or the AWC NDS.

CHAPTER 9
ROOF ASSEMBLIES
Revise the following sections to read as follows:

R903.4.3 Wind resistance of gutters. Gutters shall be designed, constructed and installed to resist wind loads in accordance with Section R301.2.1 and shall be tested in accordance with Test Methods G-1 and G-2 of ANSI/SPRI GT-1.

R904.6 Ridge vents of metal, plastic or composition material. All ridge and off-ridge vents shall be installed in accordance with the manufacturer’s installation instructions and be capable of resisting the wind loads specified in Section R301.2.1. Ridge and off-ridge vents shall also be tested in accordance with TAS 100(A) for wind driven water infiltration. All ridge and off-ridge vents shall be limited by the roof mean height as tested in accordance with TAS 100(A), and shall be listed in the system manufacturer’s product approval.
R905.2.6.1 Classification of asphalt shingles. Asphalt shingles shall be classified in accordance with ASTM D3161, TAS 107 or ASTM D7158 as Class H to resist the basic wind speed per Figure R301.2(4). Shingles classified as ASTM D3161 Class D or classified as ASTM D7158 Class G are acceptable for use where \(V_{\text{asd}} \) is equal to or less than 100 mph. Shingles classified as ASTM D3161 Class F, TAS 107 or ASTM D7158 Class H are acceptable for use for all wind speeds. Asphalt shingle wrappers shall be labeled to indicate compliance with ASTM D7158 Class H one of the required classifications, as shown in Table R905.2.6.1.

<table>
<thead>
<tr>
<th>TABLE R905.2.6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASSIFICATION OF ASPHALT SHINGLES</td>
</tr>
<tr>
<td>(Delete Table R905.2.6.1)</td>
</tr>
</tbody>
</table>

R905.2.6.2 Asphalt shingle installation at eaves. Asphalt shingle starter strips at eaves shall comply with one of the following:

1. Set starter strips in a minimum 8-in.-wide strip of compatible roofing cement. The maximum thickness of roofing cement shall be \(\frac{3}{8} \) in. Starter strips shall also be fastened parallel to the eaves along a line above the eave line according to the manufacturer’s specifications. Fasteners shall be positioned so they will not be exposed under the cutouts in the first course. Starter strips and shingles must not extend more than \(\frac{3}{4} \) in. beyond the drip edge.

2. A self-adhering starter strip complying with the manufacturer’s instructions with asphalt adhesive strips at the eave. The starter strip shall be installed so that starter strip adheres to and covers the drip edge top surface.

R905.2.6.3 Asphalt shingle installation at gable rakes. Asphalt shingles at gable rakes shall comply with one of the following:

1. Shingles at gable rakes shall be set in a minimum 8-in.-wide strip of compatible roofing cement. The maximum thickness of roofing cement shall be \(\frac{3}{8} \) in. Shingles at gable rakes shall also be fastened in accordance with the manufacturer’s specifications.

2. Set starter strips at gable rakes in a minimum 8-in.-wide strip of compatible roofing cement. The maximum thickness of roofing cement shall be \(\frac{3}{4} \) in. Starter strips shall be fastened parallel to the gable rake according to the manufacturer’s specifications. Fasteners shall be positioned so they will not be exposed under the cutouts in the first course. Starter strips and shingles must not extend more than \(\frac{3}{4} \) in. beyond the drip edge.

3. A self-adhering starter strip complying with the manufacturer’s instructions with asphalt adhesive strips at the gable rake. The starter strip shall be installed so that starter strip adheres to and covers the drip edge top surface.

R905.2.8.5 Drip edge. Provide drip edge at eaves and gables of shingle roofs. Overlap to be a minimum of 3 inches (76 mm). Eave drip edges shall extend 1/2 inch (13 mm) below sheathing and extend back on the roof a minimum of 2 inches (51 mm). Drip edge at gables shall be installed over the underlayment. Drip edge at eaves shall be permitted to be installed either over or under the underlayment. If installed
over the underlayment, there shall be a minimum 4 inch (51 mm) width of roof cement shall be installed over the drip edge flange. Drip edge shall be mechanically fastened a maximum of 4 12 inches (102 305 mm) on center with ring shank nails. Fasteners shall be placed in an alternating (staggered) pattern along the length of the drip edge with adjacent fasteners placed near opposite edges of the leg/flange of drip edge on the roof. Where the \(V_{sd} \) as determined in accordance with Section R301.2.1.3 is 110 mph (177 km/h) or greater or the mean roof height exceeds 33 feet (10 058 mm), drip edges shall be mechanically fastened a maximum of 4 inches (102 mm) on center.

R905.3 Clay and concrete tile. The installation of clay and concrete tile shall be in accordance with the manufacturer’s installation instructions, or recommendations of FRSA/TRI *Florida High Wind Concrete and Clay Roof Tile Installation Manual*, Sixth Edition where the \(V_{sd} \) is determined in accordance with Section R301.2.1.3 or the recommendations of RAS 118, 119 or 120.

Exceptions:

1. Concrete and clay tiles shall be mechanically attached or adhesive-set. Mortar attachment of concrete and clay roof tile is not permitted.
2. Hip and ridge concrete and clay tiles shall be attached to a ridge board.
3. At eaves, each tile in the first course of tiles shall be secured with a metal clip or be adhesive-set.
4. For buildings located within 3000 ft. of the coast, all metal clips, straps, and fasteners shall be stainless steel.

R905.10 Metal roof panels. The installation of metal roof panels roof systems shall comply with the provisions of this section. Metal panel roof system through fastened or standing seam shall be tested in accordance with ASTM E1592. Metal roofing panels shall be factory or field manufactured in accordance with the manufacturers’ product approval specifications and limitations of use. Metal roofing panels shall be factory or field manufactured under a quality assurance program that is audited by a third-party quality assurance entity approved by the Florida Building Commission for that purpose.
<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Source/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather protection and water resistive barriers</td>
<td>2007 and 2010 FBC</td>
</tr>
<tr>
<td></td>
<td>Rainwater Management Performance of Newly Constructed Residential Building Enclosures During August and September 2004, Joseph Lstiburek</td>
</tr>
<tr>
<td></td>
<td>ICC Code Development process, code change RB246-19</td>
</tr>
<tr>
<td>Walls constructed according to the masonry and concrete chapters in the code</td>
<td>FBC HRAC recommendation</td>
</tr>
<tr>
<td>Brick veneer tie attachment and spacing</td>
<td>FEMA P-499 TFS 5.4</td>
</tr>
<tr>
<td>Face-nailing fiber cement lap siding</td>
<td>FEMA Hurricane Harvey MAT report</td>
</tr>
<tr>
<td></td>
<td>FEMA P-499 TFS 5.3</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td>Vinyl siding design wind pressure increase</td>
<td>Wind Loads on Components of Multi-Layer Wall Systems with Air-Permeable Exterior Cladding, IBHS</td>
</tr>
<tr>
<td>Wind resistance of gutters</td>
<td>FEMA Hurricane Charley, Hurricane Ivan, and Hurricane Katrina MAT reports</td>
</tr>
<tr>
<td></td>
<td>ICC Code Development process, code changes S24-16 and S17-19</td>
</tr>
<tr>
<td>Metal panel roof systems tested in accordance with ASTM E1592</td>
<td>FBC HRAC recommendation</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td>Ridge vent testing for wind loads and wind-driven rain</td>
<td>FBC HVHZ</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td></td>
<td>FEMA P-499 TFS 7.5</td>
</tr>
<tr>
<td>Asphalt shingle classification</td>
<td>FEMA Hurricane Harvey Recovery Advisory 2</td>
</tr>
<tr>
<td></td>
<td>General enhanced construction recommendation</td>
</tr>
<tr>
<td>Asphalt shingle installation</td>
<td>IBHS Fortified Roof</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Harvey Recovery Advisory 2</td>
</tr>
<tr>
<td>Drip edge installation</td>
<td>IBHS Fortified Roof</td>
</tr>
<tr>
<td>Concrete and clay tile installation</td>
<td>FEMA P-499 TFS 7.4</td>
</tr>
<tr>
<td>Impact protection for windows, doors, and garage doors</td>
<td>IBHS Fortified Silver</td>
</tr>
<tr>
<td></td>
<td>FBC HVHZ</td>
</tr>
<tr>
<td>Impact protection of entire envelope for Risk Category III and IV buildings</td>
<td>FBC HVHZ</td>
</tr>
<tr>
<td></td>
<td>General enhanced construction recommendation</td>
</tr>
<tr>
<td>Window and door types and testing</td>
<td>General enhanced construction recommendation</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td></td>
<td>University of Florida report to FBC - Comparison of Severe Wind-Driven Rain Test Methods for Fenestration</td>
</tr>
<tr>
<td>Soffit installation and testing</td>
<td>FEMA Hurricane Irma Recovery Advisory 2</td>
</tr>
<tr>
<td></td>
<td>FEMA Hurricane Michael Recovery Advisory 2</td>
</tr>
<tr>
<td></td>
<td>FBC HVHZ</td>
</tr>
<tr>
<td>IBHS Fortified Silver</td>
<td>IBHS Fortified Roof</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Wall and roof sheathing thickness and type</td>
<td>FBC HVHZ</td>
</tr>
<tr>
<td>Roof sheathing attachment</td>
<td>IBHS Fortified Roof</td>
</tr>
</tbody>
</table>